Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: CRACK MODELING USING GENERALIZED WESTERGAARD STRESS FUNCTIONS IN THE HYBRID BOUNDARY ELEMENT METHOD
Autor: ELVIS YURI MAMANI VARGAS
Colaborador(es): NEY AUGUSTO DUMONT - Orientador
Catalogação: 13/JUL/2016 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26857&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26857&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.26857
Resumo:
A particular implementation of the hybrid boundary element method is presented for the two dimensional analysis of potential and elasticity problems, which, although general in concept, is suited for fracture mechanics applications. The formulation requires integrations only along the boundary and uses fundamental solutions to interpolate fields in the domain. Generalized Westergaard stress functions, as proposed by Tada et al in 1993, are used as the problem s fundamental solutions. The proposed formulation leads to displacement-based concepts that resemble those presented by Crouch and Starfield, although in a variational framework that leads to matrix equations with sound mechanical meanings. Problems of general topology, such as in the case of unbounded and multiply-connected domains, may be modeled. The formulation, which is directly applicable to notches and generally curved, internal or external cracks, is especially suited for the description of the stress field in the vicinity of crack tips and is an easy means of evaluating stress intensity factors. The plastic phenomenon is taken into account around the crack tip through an iterative process. This thesis focuses on the mathematical fundamentals of the formulation of potential and elasticity problems. Several validating numerical examples are presented.
Descrição: Arquivo:   
COVER, THANKS, RESUMO, ABSTRACT, SUMMARY, LISTS, EPIGRAPH PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
CHAPTER 8 PDF    
REFERENCES AND APPENDICES PDF