Título: | DISTRIBUTIONS AND IMMERSIONS | |||||||
Autor: |
DAVID REY |
|||||||
Colaborador(es): |
THOMAS LEWINER - Orientador |
|||||||
Catalogação: | 18/JUL/2008 | Língua(s): | ENGLISH - UNITED STATES |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11943&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11943&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.11943 | |||||||
Resumo: | ||||||||
The challenge of studying shapes has led mathematicians
to create powerful abstract concepts, in particular
through Differential Geometry. However, differential
tools do not apply to simple shapes like cubes. This work
is an attempt to use modern advances of the Analysis,
namely Distribution Theory, to extend differential
quantities to singular objects. Distributions generalize
functions, while allowing infinite differentiation. The
substitution of classical immersions, which usually serve
as submanifold parameterizations, by distributions might
thus naturally generalize smooth immersion. This leads to
the concept of D-immersion. This work proves that this
formulation actually generalizes smooth immersions.
Extensions to non-smooth of immersions are discussed
through examples and specific cases.
|
||||||||