
4
Building Immersions with Distributions

The main objective of this work is to use distribution derivation on non-

smooth immersions. Distributions are infinitely often differentiable objects,

similarly to smooth parameterization. Therefore they naturally extend class

conditions on immersions. In this chapter we set up a formulation for D-

immersions trying to preserve the main geometric properties of immersions.

4.1
Brute D-parameterization: a first attempt

Figure 4.1: Parameterization directly from D(Rd).

There is a very direct way to substitute classical parameterizations by

distributions. Distributions are defined on test functions spaces. Therefore,

if we use a distribution T instead of a parameterization f , we change the
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parameter space from a subset U of Rd to D(U). However test functions space

D(U) have infinite dimensions, and thus the submanifold parameterized on

a test function space could have as many dimensions as the co-domain of

the distribution used has (see Figure 4.1). This is clearly an undesirable fact.

Another drawback concerns the derivative of our parameterization; we do not

know how to interpret, in terms of tangent space, the derivation of T with

respect to the space of test functions: Dφ0(T ). As a direct use of distributions as

parameterizations may not work mainly because of the non-finite dimension of

the parameter space, we propose to structure differently the parameter spaces,

in an approximation perspective.

4.2
Approximating by convolution

Figure 4.2: Convolution regularizes the parameterization.

On the one hand, defining differential properties from non-differential

objects is often handled as an approximation problem, usually requiring

convolution operations. On the other hand we saw in the previous chapter

that applying a distribution and convolution product are related operations

and that we could switch from one to another easily. Our approach lies in the

regularization properties of the convolution product. Indeed, when computing

the convolution product of a distribution with a test function, we obtain a

C∞ function (see Figure 4.2). Hence, convolution allows using distributions

as smooth parameterizations. Moreover, it is possible to think of a more

general parameterization not relying on an existing embedding: by taking
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an arbitrary distribution we can always generate a new parameterization by

computing its convolution product with a test function. More specifically, let

f be an immersion on U ⊂ Rd, parameterizing its image f(U) = M (M is a

submanifold of dimension d in Rn). Let Tf be the distribution associated to f ,

and φ be a test function on U . We define the function f̃ by:

f̃ :

{
U −→ M̃ ⊂ Rn

x 7−→
(
Tf ∗ φ

)
(x)

Since the convolution averages functions, the function f̃ does not map U

exactly on M , the image of the immersion f . Hence f̃ maps U on M̃ = f̃(U),

a mean set of M in Rn. Hence f̃ parameterizes a geometrical object that

corresponds to means of a classical submanifold M = f(U) and those means

depend on the test function φ used. In order to parameterize the original M ,

we need to choose the test function φ such that M̃ = M . This is in general

not possible directly, but at the limit as in the regularization seen in Section

3.1.2. Formally, we can define a sequence of φϵ of test functions such that(
Tf ∗ φϵ

)
(U) −−→

ϵ→0
M .

4.3
D-immersions

In the formalization of this approach, we will try to preserve the geometric

properties of the immersion f . We called the equivalent formulation for

immersion D-immersions (see Figure 4.3):

Definition 4.1. (D-immersions) T is a D-immersion if for all approximation

of the identity φϵ there exists ϵ0 > 0 such that for all ϵ ∈]0, ϵ0[, T ∗ φϵ is an

immersion.

To ensure that D-immersions actually generalize classical immersions in

the same way distributions generalize functions, we have to make sure that

the distribution associated to a smooth immersion is actually a D-immersion.

This is done in the following theorem.

Theorem 4.2. Let f be an immersion such that f : U → M , where U is an

open set of Rd such that U contains no singularity of f . If Tf is the distribution

associated to f then Tf is a D-immersion.

Proof. Let φϵ be an approximation of the identity, define fϵ such that:

fϵ(x) =
(
Tf ∗ φϵ

)
(x) =

∫
U

f(z) · φϵ(x − z)dz =
(
f ∗ φϵ

)
(x).
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Figure 4.3: Image of a D-immersion associated to an immersion.

We have to prove that for ϵ small enough fϵ is an immersion. For that, we will

show that Dxfϵ has maximal rank for all x ∈ U and 0 < ϵ < ϵ0. First observe

that Dxfϵ is actually an approximation of Dxf :

Dxfϵ :

{
Rd −→ Rn

x 7−→
(
Df ∗ φϵ

)
(x)

.

Since f is an immersion, Dxf has at least one non-vanishing minor, i.e. there

exists a d × d matrix [Dxf ]d extracted from Dxf such that det[Dxf ]d ̸= 0 for

all x ∈ U . Denote by [Dxfϵ]d the matrix extracted from Dxfϵ in the same way

that [Dxf ]d is extracted from Dxf .

The smaller ϵ, the closer det[Dxfϵ]d is from det[Dxf ]d and the further

from 0. Formally, Theorem 3.5 ensures that det[Dxfϵ]d −−→
ϵ→0

det[Dxf ]d, since

det is a continuous function:

∀α > 0, ∃βα > 0 such that |ϵ − 0| < βα ⇒ | det[Dxfϵ]d − det[Dxf ]d| < α.
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Choose α0 to be:

α0 = inf
x∈U

(
| det[Dxf ]d|

)
.

Since there are no singularities in U , α0 > 0.

Since a ball centered in det[Dxf ]d of radius inferior to α0 on the real line does

not contain 0, for all |ϵ| < βα0 we have that det[Dxfϵ]d ̸= 0 and thus Dxfϵ

has maximal rank. Concluding for all x ∈ U , exists βα0 > 0 such that for all

ϵ < βα0 , fϵ is an immersion.

4.4
Graph of a function: D-immersions from non-smooth immersions

In this section, we will prove that parameterizations of graph of func-

tions, even if only L1, are associated to D-immersions. This allows using D-

immersions for a much wider class of objects.

Theorem 4.3. Let M ∈ Rn be the graph of a function u ∈ L1 : Rn−1 → R.

Let U be an open of Rn−1 and f be the parameterization of M such that:

f :

{
U −→ M

x 7−→
(
f1(x), . . . , fn(x)

)
Where ∀i ∈ {1, . . . , n − 1}, fi : x ∈ Rn−1 7→ xi ∈ R and fn(x) = u(x).

The distribution associated to f is a D-immersion.

Proof. Let φϵ be an arbitrary approximation of the identity. We have to prove

that the mean map of f is an immersion. Defines fϵ as being the mean map of

f , fϵ = Tf ∗ φϵ = f ∗ φϵ:

fϵ

{
U −→ Mφϵ

x 7−→
((

f1 ∗ φϵ

)
(x), . . . ,

(
fn ∗ φϵ

)
(x)

)
We have to show that the rank of the Jacobian matrix is n− 1. The Jacobian

matrix of fϵ is: 
∂(f1∗φϵ)

∂x1
. . . ∂(f1∗φϵ)

∂xn−1

...
...

∂(fn∗φϵ)
∂x1

. . . ∂(fn∗φϵ)
∂xn−1


n× n−1

.

Since ∀i ∈ {1, . . . , n − 1} fi(x) = xi

we have
∂(fi ∗ φϵ)

∂xj

=
∂(fi)

∂xj

∗ φϵ =
∂(xi)

∂xj

∗ φϵ.

∂(fi ∗ φϵ)

∂xj

=

 1 ∗ φϵ =

∫
1 · φϵ(x)dx = 1 if i = j

0 ∗ φϵ = 0 if i ̸= j
∀(i, j) ∈ {1, . . . , n−1}.
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Thus the Jacobian matrix of fϵ is:

1 0 . . . 0 0

0 1 . . . 0 0
... 0

. . . 0
...

0 0 . . . 1 0

0 0 . . . 0 1

fn ∗ ∂(φϵ)
∂x1

. . . fn ∗ ∂(φϵ)
∂xn−1


n× n−1

.

Hence the rank of the Jacobian matrix of fϵ is n − 1, and consequently fϵ is

an immersion.
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