
5
Toward Geometric Properties of D-Immersions

In the previous chapter we managed to generalize the concept of immer-

sion by defining D-immersion. The choice of approximations of the identity as

test functions allows recovering of original parameterizations when parameter

ϵ tends to 0, in the case of a D-immersion associated with a smooth immersion.

We will now exhibit geometric properties of D-immersions. We want to know

what kind of structure is mapped through a D-immersion, and we will thus

focus on a possible structuration of D(U).

5.1
Structuring D(U)

Figure 5.1: A structure on part of D(U).

In this section, we will consider only the test functions ϕ ∈ D(Rd) with
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unit mass, denoting

D∗(U) = {ϕ ∈ D(U),

∫
U

ϕ = 1} .

An immersion maps the local structure of Rd onto its image. Similarly, a D-

immersion maps a certain structure of D∗(Rd) onto its image. This structure

is a collection of approximation curves: any ϕ ∈ D∗(Rd) can be seen as an

approximation of the identity ϕ = τzφ̌ϵ for a certain z and ϵ (see Figure 5.1).

For fixed ϵ, varying z, the test functions τzφ̌ϵ span a d-dimensional object in

D∗(Rd). Reducing ϵ generates approximations of the identity at each point of

this object. A D-immersion maps this structure in Rn: given a D-immersion T ,

the image ⟨T, ϕ⟩ ∈ Rn of an arbitrary test function with unit mass ϕ is mapped

onto an object Mφϵ = T ∗φϵ(U) by T ∗φϵ(z) = ⟨T, τzφ̌ϵ⟩ = ⟨T, ϕ⟩. If ϵ is small

enough, but not zero, Mφϵ is a smooth d-submanifold. Intuitively, part of the

image of a D-immersion can be seen as a collection of smooth submanifold in

Rn, eventually tending to an object in Rn.

5.2
Compatible D-immersions: change of parameters

In the classical context, we are able to characterize if two immersions

define the same object. More precisely: f : Uf → M and g : Ug → M define the

same object if h = g−1◦f is a diffeomorphism. Applying h is called a change of

parameters, and two immersions are compatible if they locally define the same

object. Properties derived from immersions are geometric if they are invariant

by change of parameters, otherwise they are merely analytical. We would like

to state a similar characterization for D-immersions. Since we use distributions

as parameterizations, the change of parameters has to be done in spaces of test

functions (see Figure 5.2).

Definition 5.1. (D-change of parameters) We say that two D-immersions

T ∈ D′(U) and S ∈ D′(V ) define the same object if:

∃h : U → V and ∀φ ∈ D∗(U), ∃ϵ0 > 0 and ψ ∈ D∗(V ) such that :

∀ϵ ∈]0, ϵ0[,∀u ∈ U, (T ∗ φϵ)(u) = (S ∗ ψϵ)(h(u)) .

This definition may be restrictive, but it extends the notion of compatible

immersions at least in the linear case, as stated in the next lemma:

Lemma 5.2. If f and g are two compatible C∞-immersions and h = g−1 ◦ f

is linear, then Tf and Tg are compatible D-immersions.
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Figure 5.2: Compatible D-immersions.

Proof. We know from Theorem 4.2 that Tf and Tg are D-immersions. We

have to check if they locally define the same object. Let h = g−1 ◦ f be the

diffeomorphism mapping the domains U and V of f and g respectively.

Given φ ∈ D∗(U), we want to determine ψ ∈ D∗(V ) such that ⟨Tf , τuφ̌ϵ⟩ =⟨
Tg, τh(u)ψ̌ϵ

⟩
. We have:

⟨Tf , τuφ̌ϵ⟩ =

∫
U

f(x) · φϵ(u − x)dx

=

∫
U

g ◦ g−1 ◦ f(x) · 1

ϵd
φ

(
u − x

ϵ

)
dx

=

∫
U

g ◦ h(x) · 1

ϵd
φ

(
u − x

ϵ

)
dx

=

∫
V

g ◦ h
(
h−1(y)

)
· 1

ϵd
φ

(
u − h−1(y)

ϵ

)
·
∣∣det J

(
h−1

)∣∣−1
(y) dy

=

∫
V

g(y) · φϵ

(
u − h−1(y)

)
·
∣∣det J

(
h−1

)∣∣−1
(y) dy .
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We can define, for a given ϵ:

ψ(y) = φ
(
h−1(y)

)
·
∣∣det J

(
h−1

)∣∣−1
(y) .

Observe that since h is a C∞ diffeomorphism, ψ is C∞ with support in V .

Moreover, since we supposed that h is linear, we have that J (h−1) is a constant

matrix and

τh(u)ψ̌ϵ(y) =
1

ϵd
ψ

(
h(u) − y

ϵ

)
=

1

ϵd
φ

(
h−1

(
h(u) − y

ϵ

))
·
∣∣det J

(
h−1

)∣∣−1

= φϵ

(
u − h−1(y)

)
·
∣∣det J

(
h−1

)∣∣−1
.

Finally, Tf ∗ φϵ(u) = ⟨Tf , τuφ̌ϵ⟩ =
∫

V
g(y) · τh(u)ψ̌ϵ(y)dy =

⟨
Tg, τh(u)ψ̌ϵ

⟩
=

Tg ∗ ψϵ(h(u)), with ψ ∈ D∗(V ).

From the last observation of the proof, the change of parameters works

efficiently for the C∞ case with linear domain mapping, but unfortunately the

substitution formula does not work directly for other classes of functions. Here

we face a delicate point of our proposal if we want to extend differential tools

to the C0 case.

5.3
The C1 case

We were not able to define D-change of parameters that extend directly

C0-subsitutions. However, it should be possible in the C1 case. Indeed, we

conjecture the D-immersions associated to compatible C1 immersions are D-

compatible. Follow elements of an eventual proof. Let f and g be two C1

embeddings and name Tf and Tg their associated distributions. Given φ ∈ C∞
0

a test function, the C1 substitution is h = g−1 ◦f . By the substitution formula

of Theorem 5.2, we obtain ψ = φ ◦ h−1| det J(h−1)|−1. Since h is only C1, ψ

is only locally C1. Hence ψ is not a test function. Given δ > 0, there exists

ψ̃δ ∈ C∞
0 such that: ∣∣∣ ∫

g · ψ −
⟨
Tg, ψ̃δ

⟩ ∣∣∣ < δ.

In that case, ψ̃δ is a test function that may approximate the desired change of

parameters for the C1 case.

5.4
Tangent cones from D-immersions

In order to study singular objects we have to be able to define approxi-

mations spaces upon singularities. Since tangent spaces cannot be defined ev-
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erywhere on singular objects we propose a definition of tangent cone. We will

see that this definition matches the definition of the common tangent space on

regular objects.

5.4.1
Regular case

Figure 5.3: The tangent space at the images of the mean maps.

Consider a smooth immersion f and its associated D-immersion Tf , and

a fixed parameter q ∈ U . As recalled in Section 2.3, the tangent plane at f(q) is

the vector space tg(f, q) = Tf(q)f(U) = Dq f(Rd). Since Tf is a D-immersion,

for φ ∈ D∗(U) and for ϵ small enough, fϵ = Tf ∗φϵ is a smooth immersion. We

can thus define tg(fϵ, q) = (Dq fϵ)(Rd). In the smooth case, we would expect

tg(fϵ, q) to tend to tg(f, q) (see Figure 5.3):

Proposition 5.3. The derivative of fϵ = Tf ∗ φϵ is :

Dqfϵ = Dq(f ∗ φϵ) = (Dqf ∗ φϵ).

Moreover: lim
ϵ→0

Dqfϵ = Dqf .

Proof. This is a direct consequence of Lemma 3.2 and Theorem 3.5.
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5.4.2
Singular case: classical approach

A simple definition for tangent cones on continuous objects can be stated

as:

Definition 5.4. Given a set K ∈ Rn, we say that w ∈ Rn belongs to

the tangent cone at s to K, denoted by T (s,K), if there exists a sequence

(hm)m ∈ (Rn)N where hm ̸= 0 and a sequence (λm)m ∈ (R)N where λm > 0,

such that:  hm −−−→
m→∞

w

λm −−−→
m→∞

0
and ∀m, s + λmhm ∈ M.

5.4.3
D-tangent cone

Now, we intend to define a tangent cone directly from a D-immersion.

Following the regular case, the tangent cone of a D-immersion T from param-

eter q ∈ U would be the limit of DqTϵ(Rd), where Tϵ = T ∗ φϵ is a smooth

immersion for small ϵ. This brute idea must overcome three delicate points:

First, it would be a vector space convergence, and the tangent cone may not

be a vector space. To overcome this, we can look at the function limit of DqTϵ.

Second, for a general distribution, this may not converge to a function. We

will thus look at the accumulation points instead of the limit. Last, this defi-

nition may depend of the approximation of the identity φϵ used. Therefore we

consider the union of the limits for all the approximations of the identity. This

leads to the following definition:

Definition 5.5. (D-Tangent Cone) Let T be a D-immersion, q ∈ U a fixed

parameter. The D-tangent cone of T at q denoted by tgD(T, q), by:

tgD(T, q) =
∪
φϵ

(
Acc {Dq Tϵ}

)
(Rd),

where Acc denote the set of accumulation points in the L1 topology.

The D-tangent cone can be restricted by applying conditions on φϵ.

Definition 5.6. (D+-Tangent Cone) Let T be a D-immersion, q ∈ U a fixed

parameter. The restricted D-tangent cone of T at q denoted by tg+
D(T, q), by:

tg+
D(T, q) =

∪
φϵ>0

(
Acc {Dq Tϵ}

)
(Rd) .
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Similarly to this positive tangent cone, we can define the symmetric

tangent cone by restricting the test functions φϵ to be symmetric with respect

to the origin.

Remark 5.7. The D-tangent cone is invariant by D-change of parameters.

Remark 5.8. Proposition 5.3 ensures that, if f is an immersion, tgD(Tf , q) =

tg+
D(Tf , q) = tg(f, q), i.e. the D-tangent cone extends the classical tangent cone.

5.5
Intuitive proposal for D-submanifold

The next step would be to combine D-immersions in atlases to form D-

submanifolds, and to give an intrinsic definition for these objects. This section

proposes a description of such objects in an informal way. We could define a

D-submanifolds M as a subset of Rn which is locally the limit of the images

of D-immersions:

M ⊂ Rn is a D-submanifold of dimension d if, for all point x ∈ M, there

exists :

– an open neighborhood V of x in Rn,

– a compact K around V (x ∈ V ⊂ K ⊂ Rn),

– an open set U in Rd,

– a D-immersion T .

such that ∀φ ∈ D∗(U),
(
(T ∗ φϵ)(U)

)
∩ K

dH−−→
ϵ→0

M∩ K, where dH(A,B) =

max{supa∈A(d(a,B), supb∈B(d(b, A)} is the Hausdorff distance.

Moreover, if T and S satisfy the above criteria, then they must be compatible

D-immersions. This definition may be less restrictive if imposing only the

existence of φ ∈ D∗(U), instead of having the condition on all test function.

The main challenge for this definition is to prove that a smooth submanifold is

a D-submanifold. This may be easier with the convergence in K, as suggested

above, since the Hausdorff distance is reached on compacts.
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