
6
Examples

We experiment our constructions on three submanifolds immersed in the

plane: a parabola as an example of a smooth submanifold and a V-function

and a cusp for non-smooth submanifolds.

6.1
Test functions

To experiment the concept of D-immersions, we need some test functions

in order to evaluate our maps.

To do so, we use combinations of the following standard test function:

ϕ : t 7−→

{
exp(t2/(t2−1))

NORM
if t2 < 1 ,

0 otherwise .

From this test function it is possible to generate many others using a very

simple trick: averaging several copies of ϕ translated to different points on the
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Table 6.1: Some of the approximations of the identity used in the examples.
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real line we get a new test function (see Table 6.1). We can easily then create

an approximation of the identity by:

φϵ : t 7−→ 1

ϵd
·
∑

αi · ϕ( t−ti
ϵ

)∑
αi

.

Through our work we used different test functions to examplify D-immersions

upon two criterias: their positiveness and their symmetry with respect to the

origin. In paricular, we expect positive test functions to respect convexity

properties, in particular for the positive tangent cone, and symmetric test

functions to respect the symmetries of the immersion. That leads us to consider

five types of test functions: a basic gaussian-like test function (φ1), a positive

and symmetric one (φ2), a non-positive and symmetric (φ3), a positive and

non-symmetric one (φ4) and finally a non-positive and non-symmetric one

(φ5). Here is their expression in function of ϕ:

φ1 = ϕ(t),

φ2 =
ϕ(t − 1) + ϕ(t + 1)

2
,

φ3 =
2ϕ(t − 1) + ϕ(t + 1)

3
,

φ4 = −ϕ(t − 1) + 3ϕ(t) − ϕ(t + 1),

φ5 = 2ϕ(t − 1) − ϕ(t + 1).

6.2
Experimental setup

In order to estimate the direction of the tangent plane and the curvature

at a given point of an approximated immersion in the plane we use a Maple-

based program (see appendix A). We use the five test functions φ1 . . . φ5

described previously to proceed with the tests. Three parameters are to be

set to compute a test. The main one is the value of ϵ, the parameter relative to

the approximation of the identity. We fixed three values for ϵ along our tests:

0.1, 0.05 and 0.01. Another parameter named translation sets the overlapping

between the different bumps a test function can have. We set it to 9
10

in order to

have a small overlapping between the bumps. As a matter of fact, we observed

that a small overlap allows a cleaner convolution between the test function

and the immersion. The last parameter to set is the number of digits we want

Maple to work with for numerical evaluations, although Maple tries to perform

most of the evaluations formally. A greater number of digits oftenly leads to

computational issues and we thus try to optimize the value of this parameter
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Mφ ϵ = 0.1 ϵ = 0.01 ϵ = 0.001

ϕ(t)

K2 K1 0 1 2

K2

K1

1

2

3

4

K2 K1 0 1 2

K2

K1

1

2

3

4

K2 K1 0 1 2

K2

K1

1

2

3

4

2
3
ϕ(t) + 1

3
ϕ(t + 2)

K2 K1 0 1 2

K2

K1

1

2

3

4

K2 K1 0 1 2

K2

K1

1

2

3

4

K2 K1 0 1 2

K2

K1

1

2

3

4

2ϕ(t) − ϕ(t + 2)

K2 K1 0 1 2

K2

K1

1

2

3

4

K0,10 K0,05 0 0,05 0,10

K0,10

K0,05

0,05

0,10

Table 6.2: Mean manifolds with the mean tangent line for the parabola.

for each test. We fix it according to the value of the ϵ parameter: 5, 8 and 10

digits for ϵ = 0.1, 0.05, 0.01 respectively.

Finally, we choose a parabola, a V-function and a cusp to be our

experimental immersions. All three of them are D-immersions since they are

all graphs of functions. Both non-smooth immersions are representative of low

order singularities in classical geometry, and are thus two interesting samples

in discrete geometry. In particular, the V-function is the typical example of

polygonal curves which have many applications in discrete modelling.

We try the three dimensional case (see appendix B) as well, meanwhile

we encountered several issues when executing the Maple data-sheet. Although

we managed to produce correct three dimensional test functions from the

base function ϕ, we could not have Maple compute numerical values of the

convolution. This is due to the lack of numerical methods for double integrals

in Maple. Actually, Maple computes the double integral of the convolution

by iterated integrals, requiring a formal integration followed by a numerical

integration. Since ϕ has no simple primitive, Maple is not able to perform the

formal integration and thus cannot evaluate or plot the required convolutions.

6.3
Tests on a parabola

The first example is a C∞ submanifold of dimension 1 immersed in the

plane; namely a parabola parameterized as the graph of the square function
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ϵ = 0.1 ϵ = 0.05 ϵ = 0.01
Test function Tang Curv Tang Curv Tang Curv

φ1 0 2 0 2 0 2
φ2 0 2 0 2 0 2
φ3 -0.06 1.98 -0.03 1.99 -0.006 1.99
φ4 0 2 0 1.99 0 1.99
φ5 -0.54 1.36 -0.27 1.79 -0.054 1.99

Table 6.3: Tangent plane direction and curvature estimation for the parabola.

(see Table 6.2). Define:

M =
{

(t, t2), t ∈ R
}

.

Let U be an open of R, define f such that:

f :

{
U −→ M ,

t 7−→ (t, t2) .

The function f is an immersion on M and as being the graph of a function

theorem 4.3 ensures that Tf is a D-immersion. Now let’s see how this is related

to the classical theory. We define fϵ as before:

fϵ :

{
U −→ Mφϵ ,

x 7−→ (f ∗ φϵ)(x) .

For all φϵ such that fϵ is an immersion, Mφϵ is a mean submanifold of the

plane. We can observe on Table 6.2 nice approximations for positive test

functions, while non-positive test functions may generate some instabilities.

Table 6.3 gives the estimations of the direction of the tangent plane Tang and

the curvature Curv at parameter value 0 of the immersion, based on the five

test functions listed previously.

Tang =
y′(0)

x′(0)
Curv =

x′(0)y′′(0) − x′′(0)y′(0)

(x′(0)2 + y′(0)2 )
3
2

Notice that for all symmetric test functions (i.e, φ1, φ2, φ4) the tan-

gent plane and the curvature are well approximated. For non-symmetric test

functions, both the tangent plane and the curvature converge to their original

values when ϵ tends to 0.

6.4
Tests on a V-function

To test our theory on topological submanifolds, we study the graph of the

absolute value function. We are interested in studying the unique singularity
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Mφ ϵ = 0.1 ϵ = 0.01 ϵ = 0.001
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Table 6.4: Mean manifolds with the mean tangent line for the V-shape.

of this submanifold which stands at the origin of the plane (see Table 6.4).

Define:

N =
{

(t, |t|), t ∈ R
}

.

Let V be an open of R, define g such that:

g :

{
V −→ N ,

t 7−→ (t, |t|) .

The function g is a parameterization of N but it fails to be an immersion at

t = 0. However by Theorem 4.3 Tg is a (non-trivial) D-immersion. Now define

gϵ as being the mean map of g:

gϵ :

{
V −→ Nφϵ ,

x 7−→ (g ∗ φϵ)(x) .

Therefore Nφϵ is a mean submanifold of the plane for all ϵ > 0, i.e, a tangent

plane can be defined at any point. We can observe on Table 6.4 that non-

symmetric test functions generate non horizontal tangent planes, even when ϵ

is reduced. While symmetric test functions respect the symmetry of the right

angle. We can actually prove this fact: Name s the unique singularity of N .
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When ϵ tends to 0, we can compute the D-tangent cone of Tg at s:

tgD(Tg, s) =
∪

φϵ>0

(
Acc {Ds gϵ}

)
(R) .

Now looking at the D+-tangent cone of Tg at s, we have:

Proposition 6.1. tg+
D(Tg, s) respects the convexity of the submanifold N : all

its elements are directions below N at s.

Proof. Since N is a graph in the plane, it can parameterized by two functions,

x(t) = t and y(t) = |t|. Here tg+
D(Tg, s) is below N when: −1 ≤ y′(0)

x′(0)
≤ 1.

Theorem 4.3 ensures that x′(0) = 1:

x′(0) = −
∫ ∞

−∞
t · φ′

ϵ(t) dt = −
[
t · φϵ(t)

]∞
−∞

+

∫ ∞

−∞
φϵ(t) dt = 1.

Now, the derivative of y at 0 is:

y′(0) = −
∫ ∞

−∞
|t| · φ′

ϵ(t) dt

= −
∫ 0

−∞
(−t) · φ′

ϵ(t) dt −
∫ ∞

0

t · φ′
ϵ(t) dt

=
[
t · φϵ(t)

]0

−∞
−

∫ 0

−∞
φϵ(t) dt −

[
t · φϵ(t)

]∞
0

+

∫ ∞

0

φϵ(t) dt

=

∫ ∞

0

φϵ(t) dt −
∫ 0

−∞
φϵ(t) dt +

∫ 0

−∞
φϵ(t) −

∫ 0

−∞
φϵ(t)

= x′(0) − 2 ·
∫ 0

−∞
φϵ(t)

We obtain:
y′(0)

x′(0)
= 1 − 2 ·

∫ 0

−∞
φϵ(t).

Since

∫ ∞

−∞
φϵ(t) dt = 1,

∫ 0

−∞
φϵ(t) dt ≤ 1. Moreover, since φϵ ≥ 0, 1 ≥∫ 0

−∞
φϵ(t) dt > 0, we get:

−1 ≤ 1 − 2 ·
∫ 0

−∞
φϵ(t) < 1.

And finally

−1 ≤ y′(0)

x′(0)
≤ 1.
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ϵ = 0.1 ϵ = 0.05 ϵ = 0.01
Test function Tang Curv Tang Curv Tang Curv

φ1 0 16.57 0 33.14 0 165.7
φ2 0 0.23 0 0.46 0 2.33
φ3 -0.33 0.19 -0.33 0.39 -0.33 1.99
φ4 0 49.24 0 98.48 0 492.4
φ5 -2.99 0.007 -2.99 0.014 -2.99 0.073

Table 6.5: Tangent plane direction and curvature estimation for the V-function.

Similarly to the previous example, Table 6.5 gives the estimations of the

direction of the tangent plane and the curvature at parameter value 0 of the

immersion. Here it can be observed that the curvature is inversely proportional

to ϵ: when ϵ is divided by a certain amount, the curvature is multiplied by the

same amount. This was an expected result since when ϵ tends to 0 the mean

submanifold approximates the right angle with increasing precision linearly

and thus the curvature rises linearly. Notice that here again symmetric test

functions generate good approximations of the tangent plane.

6.5
Tests on a cusp

For the cusp, we only computed the estimations for the direction of the

tangent plane and the curvature at parameter value 0 of the immersion (see

Table 6.6). Once again due to the symmetry of the immersion, the direction of

the tangent plane is well approximated when using symmetric test functions.

The curvature explodes in absolute value when ϵ tends to 0: this behaviour

corresponds to the non-linear structure of the cusp. Since it is a highly singular

curve at its origin, approximating with convolution with a low valued ϵ results

in a bad approximation of the curvature. When ϵ decreases the curvature rises

rapidly. We can observe a lack of information around the point we focused on

when testing with φ3 since it has no symmetry. Moreover for test function φ5,

the weight on negative parts lead to a very low convergence and high numerical

instability for the tangent plane, and flat approximations for the curvature. We

ϵ = 0.1 ϵ = 0.05 ϵ = 0.01
Test function Tang Curv Tang Curv Tang Curv

φ1 0 36.29 0 102.6 0 1147.8
φ2 0 -18.06 0 -51.09 0 -571.3
φ3 -0.62 -11.04 -0.88 -21.57 -1.97 -52.95
φ4 0 145.03 0 410.2 0 4586.1
φ5 -5.60 -0.097 -7.93 -0.1 -17.7 -0.101

Table 6.6: Tangent plane direction and curvature estimation for the cusp.
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would expect a similar result as property 6.1 for the positive tangent cone of

the cusp, although in that case the tangent cone should be reduced to a single

direction. Finally, it is trivial to see that the symmetric tangent cone for this

immersion is actually reduced to the vertical direction.
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