Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: THE HOMOLOGY OF SOME ISOSPECTRAL MANIFOLDS
Autor: FELIPE DUARTE CARDOZO DE PINA
Colaborador(es): CARLOS TOMEI - Orientador
NICOLAU CORCAO SALDANHA - Coorientador
Catalogação: 02/MAR/2010 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=15309&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=15309&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.15309
Resumo:
For (Lambda) a real, diagonal matrix of simple spectrum, we consider O(lambda), the isospectral manifold of real, symmetric matrices conjugate to (Lambda), and (Tau)(Lambda), the isospectral manifold of tridiagonal matrices in O(Lambda).We compute the homologies of both manifolds, combining techniques of Morse theory and integrable systems. As a consequence, we show that the immersion of O(Lambda) in the vector space of real symmetric matrices is tight and taut, a fact with implications in numerical spectral theory.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT AND SUMMARY PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
REFERENCES AND ANNEX PDF