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Appendix

8.1

Basic notation

The vector spaces of n × n real matrices, real diagonal matrices, real

symmetric matrices and real skew-symmetric matrices are denoted by Mn,

Dn, Sn and An, respectively. The group of orthogonal matrices is O(n) =

{Q ∈Mn |QT Q = I} and SO(n) is the subgroup of orthogonal matrices with

unit determinant. The group of n×n real upper triangular matrices is denoted

by Un.

8.2

Eigen-Smoothness

In this section we establish the smooth dependence of eigenvalues and

eigenvectors on a symmetric simple spectrum matrix S and present a formula

for the derivative of the k-th eigenvalue with respect to S. The first step is

to show that we are in an open set of Sn, and that, therefore, the question of

differentiability make sense.

Proposition 26 The set of real n × n symmetric matrices with simple spec-

trum is open.

Proof: Let S be a real symmetric matrix with simple spectrum. Then its

characteristic polynomial p satisfies the hypotheses of the lemma below,

implying that if S̃ is sufficiently close to S, the coefficients of p̃ will be close

to those of p and that, therefore, the eigenvalues of S̃ will still be distinct. �

Lemma 27 (Polynomial roots) Let p : R → R be a polynomial of degree n

with real coefficients whose roots are all distinct and real. Then there exists a

neighborhood U of p in Pn - the space of polynomials of degree n - such that

all polynomials in U also have distinct real roots.

Proof: Let
f : Pn × R → R

(q, x) 7→ q(x)
.
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Denoting by ri the roots of p,

f(p, x) = pn

∏

i

(x− ri)

and

D2f(p, x) = pn

∑

k

∏

i6=k

(x− ri).

Therefore, at a root rj,

D2(p, rj) = pn

∏

i6=j

(rj − ri) 6= 0,

and the implicit function theorem applies. We may therefore conclude that,

locally around p, each root varies smoothly with the polynomial. Since the

roots rj are all distinct, we may restrict the neighborhood U around p in order

to guarantee that they all remain distinct for all q ∈ U . �

Strictly speaking, these results already show us that each eigenvalue

varies smoothly with respect to a symmetric matrix if we restrict ourselves

to a sufficiently small neighborhood of a simple spectrum symmetric matrix.

However, there is a sense in which the corresponding eigenvectors also vary

smoothly with respect to the matrix. This smooth dependence of eigenvalues

and eigenvectors is our next result.

Proposition 28 (Eigen-Smoothness) Let S0 be a real symmetric n × n

matrix with simple spectrum such that S0v0 = λ0v0 for v0 ∈ S
n−1. Then there

exist:

– A neighborhood U ⊂ Sn of S0.

– A neighborhood V ⊂ S
n−1 × R of (v0, λ0).

– A smooth function G : U → V .

such that, in U × V ,

Sv = λv ⇔ (v, λ) = G(S).

Proof: Let us define

F : Sn × (Sn−1 × R) → R
n

(S, v, λ) 7→ Sv − λv
.
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The derivative of F with respect to the variable in (Sn−1×R) at p = (S0, v0, λ0)

is
D2F (p) : Tv0

S
n−1 × R → R

n

(w, l) 7→ S0w − λw − lv0

.

Thus, since 〈v0, w〉 = 0 and S0 is symmetric,

D2F (p)(w, l) = 0 ⇒ 〈S0w − λw − lv0, v0〉 = 0 ⇒ l = 0

and

S0w − λw = 0 ⇒ w = kv0 ⇒ w = 0,

implying that D2F (p) is injective, and therefore, bijective. The conclusion now

follows from the Implicit Function Theorem. �

Now that we have established the smooth nature of this dependence, we

may explicitly compute some derivatives. Since we are primarily interested in

eigenvalues, the function we will differentiate is the ordered spectrum map.

Definition 29 (Ordered Spectrum Map) The function

σ0 : Sn → R
n

S 7→ λ1(S) ≥ . . . ≥ λn(S)

which takes a symmetric matrix S to its ordered eigenvalues is called the

ordered spectrum map.

Proposition 30 (Ordered Spectrum Derivative) Let S0 be a symmetric

matrix with simple spectrum. The derivative of σ0 at S0 is

Dσ0(S0) : Sn → R
n

P 7→ (〈Pv1, v1〉, . . . , 〈Pvn, vn〉)

where vk is a unit eigenvector of S0 associated with λk.

Proof: First let us restrict ourselves to an adequate neighborhood U of S0

where σ0 is smooth. Given an arbitrary differentiable curve S : (−ǫ, ǫ) → U

with S(0) = S0, the following equation holds:

S(t)vk(t) = λk(t)vk(t)

where λk(t) is the k-th eigenvalue of S(t) and vk(t) the associated unit

eigenvector. Differentiating with respect to t we obtain

Ṡvk + Sv̇k = λ̇kvk + λkv̇k.
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Taking the inner product of each side with respect to vk and recalling that

〈vk, vk〉 = 1 ⇒ 〈vk, v̇k〉 = 0,

〈Ṡvk, vk〉+ 〈Sv̇k, vk〉 = 〈λ̇kvk, vk〉+ 〈λkv̇k, vk〉
〈Ṡvk, vk〉+ 〈v̇k, Svk〉 = λ̇k

〈Ṡvk, vk〉+ 〈v̇k, λkvk〉 = λ̇k.

Finally, we are left with:

λ̇k(t) = 〈Ṡ(t)vk(t), vk(t)〉,

an expression for the directional derivative of λk along a curve S(.) ⊂ U .

Since σ0|U is smooth, we may compute the total derivative Dσ0(S0) from these

directional derivatives. Thus,

Dσ0(S0)P = (〈Pv1, v1〉, . . . , 〈Pvn, vn〉).

�

8.3

The manifolds O(n) and SO(n)

From the implicit function theorem, given a smooth f : R
n+d → R

n and

a regular value c, the level f−1(c) is a differentiable manifold of dimension d.

Let Mn be the space of n × n real matrices with the topology induced

by the inner product 〈A, B〉 = tr(ABT ). Thus, since ‖A‖2 =
∑

i,j Aij
2, Mn

is isometric to R
n2

with the usual Euclidean inner product. We follow the

notation in Appendix 8.1.

Proposition 31 O(n) and SO(n) are compact differentiable manifolds of

dimension N = n(n−1)
2

. Moreover, O(n) has exactly two connected components,

SO(n) and ESO(n), both pathwise connected, E being an arbitrary orthogonal

matrix of negative determinant.

Proof:

The function
f : Mn → Sn

A 7→ AT A

is clearly smooth and, by definition, O(n) = f−1(I). If the derivative Df(Q)

has maximum rank for every point Q ∈ O(n), I will be a regular value of f
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and O(n) will be a differentiable manifold of dimension N . Now,

Df(Q) : Mn → Sn

H 7→ HT Q + QT H

and its kernel is given by the equation HT Q + QT H = 0. In the simple

case Q = I, HT + H = 0, whose solution set is ker(Df(I)) = An. In the

general case we employ the substitution A = QT H and the kernel becomes

AT + A = 0. Therefore A must be antisymmetric and H = QA. Since Q is

invertible, ker(Df(Q)) has the same dimension as that of An. Thus, whatever

the case, the Rank-nullity theorem (7) guarantees us that the dimension of the

image of Df(Q) is n2−N = n(n+1)
2

, precisely the dimension of Sn. This proves

the surjectivity of Df(Q) and, therefore, that every pre-image of I under f is

a regular value.

Since f is continuous, O(n) = f−1(I) is closed. Moreover, an arbitrary

matrix in O(n) has norm equal to
√

n, hence O(n) is a compact manifold.

However, since it contains matrices with determinants +1 and −1, O(n) cannot

be connected.

The determinant in O(n) is clearly continuous and only takes the values

1 and −1. Thus a neighborhood U of Q ∈ O(n) can be restricted to U ′ ⊆ U in

order to ensure that det |U ′ is constant. If Q ∈ SO(n), U ′ will be, by definition, a

neighborhood of Q in the induced topology on SO(n). This means that, locally,

a point of SO(n) has a neighborhood common to both topologies in question.

Now, if φ : U ⊆ O(n) → R
N is the original diffeomorphism, its restriction to

U ′ proves that SO(n) is also a differentiable manifold of dimension N . SO(n)

is a closed subset of the compact manifold O(n) and is, therefore, compact.

To prove that SO(n) is pathwise connected is an induction on the

dimension. Let us show that given any matrix Q ∈ SO(n) there is a path

in SO(n) connecting Q to I. The case n = 1 is trivial for SO(1) = {(1)}. The

inductive step uses the following result:

Lemma 32 For n ≥ 1 and Q ∈ SO(n) there exists an arc

α : [0, 1] → SO(n)

satisfying α(0) = I and α(1)(Qen) = en.

Proof:

The case n = 1 is trivial. Let n ≥ 2. We know that v = Qen ∈ S
n−1. Let

us proceed by slicing the proof in cases:

1. v = en.
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Let α(t) = I.

2. v 6= en and v 6= −en.

In this case the vectors v and en span a plane Π. Let w ∈ S
n−1 be

obtained by removing from en its projection onto v and normalizing

the resultant vector. Completing the set {v, w} to an orthonormal basis

B = {v, w, w3, · · · , wn} for R
n, we can construct a family of rotations

which act on Π and keep all of the wi vectors fixed. It is enough to

choose an adequate family of rotations φθ : Π → Π which gradually take

v to en. Indeed, in the base {v, w},

φθ =

(

cos θ − sin θ

sin θ cos θ

)

∈ SO(2).

We may now use the function

Rθ : Π⊕ Π⊥ → Π⊕ Π⊥

(x, y) 7→ (φθ(x), y)

whose matrix representation in the basis B is

Rθ =

(

φθ 0

0 I

)

∈ SO(n).

3. v = −en.

Since n ≥ 2, there exists ei ∈ S
n−1 satisfying ei ⊥ en and ei ⊥ v. Using

the construction outlined in the previous case we arrive at two arcs, one

connecting v to ei and the other connecting ei to en.

�

Returning to the proposition, let

γ : [0, 1] → SO(n)

t 7→ α(t)Q
.

Then γ(0) = Q and γ(1)en = en. Thus γ is a curve in SO(n) which starts

in Q and undoes, a little at a time, the action of Q over en. The matrix
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representation of γ(1) has the form

γ(1) =













0

R
...

0

0 . . . 0 1













(the last row starts with n − 1 zeros because the first n − 1 columns are

orthogonal to en). We can easily check that the submatrix R above is in

SO(n − 1). By the induction hypothesis, there exists a curve β ⊆ SO(n − 1)

connecting R to In−1. The curve

δ : [0, 1] → SO(n)

t 7→













0

β(t)
...

0

0 . . . 0 1













connects γ(1) to In. Concatenating the paths γ and δ we finally join Q and In.

�

8.4

QR, LU and Bruhat decompositions

We list some basic facts of linear algebra used in the text.

8.4.1

QR-decomposition

Given a real square matrix M , its QR-decomposition is the product

M = QR = Q(M)R(M), where Q is real orthogonal and R is an upper

triangular matrix with strictly positive diagonal. On invertible matrices, the

QR-decomposition is unique and the factors Q(M) and R(M) vary smoothly

with M :

GLn ≃ O(n)× U+
n , GL+

n ≃ SO(n)× U+
n .

8.4.2

LU-decomposition

The LU-decomposition of a real square matrix M is the product M =

LU = L(M)U(M), where L is lower triangular unipotent (i.e., with diagonal

entries equal to 1) and U is upper triangular. Let Mk be the k × k submatrix

consisting of the intersection of the first k rows and columns of M for
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k = 1, . . . , n. If det Mk 6= 0 for all k, the LU -decomposition is unique and varies

smoothly with M . If all the determinants of Mk are positive, the diagonal of U

is positive: such matrices M are called LU-positive. Clearly, given a matrix M

for which the determinants of Mk are nonzero, there is a (unique) sign diagonal

matrix E such that EM is LU-positive.

A simple inspection verifies that, for any permutation P , a conjuga-

tion P T LP of an invertible lower triangular matrix still admits an LU-

decomposition.

8.4.3

Bruhat decomposition

The Bruhat matrix P = B(M) associated to an invertible matrix M is the

unique permutation matrix P for which there exist lower triangular matrices

L1 and L2 with M = L1PL2 (the Bruhat decomposition of M).

The Bruhat matrix admits an equivalent description in terms of local

ranks. For an invertible n×n matrix M , let rNE(M) be the n×n matrix whose

entry ri,j is the rank of the submatrix of M consisting of the intersection of rows

1, . . . , i and columns j, . . . , n. Notice that, if L1 and L2 are lower triangular

matrices, rNE(L1ML2) = rNE(M): in particular, rNE(M) = rNE(B(M)).

This construction admits rather obvious variants for decompositions M =

U1PU2, M = L1PU2 and M = U1PL2, associated in a natural way with local

SW , NW and SE ranks, respectively. For instance, P = BSW (M) is the unique

permutation matrix for which there exist upper triangular matrices U1 and U2

with M = U1PU2. If the rij entry of rSW (M) is the rank of the submatrix with

rows i, . . . , n and columns 1, . . . , j then rSW (M) = rSW (BSW (M)). Also, for

the reversal πmax ∈ Sn given by πmax(i) = n + 1− i,

BSW (M) = Pπmax
B(Pπmax

MPπmax
)Pπmax

,

BNW (M) = B(MPπmax
)Pπmax

.

Notice that M admits a decomposition M = PLU if P = BSW (M) or

P = BNW (M).

8.5

Permutations and inversions

The permutations in {1, 2, . . . , n} form the group Sn. The identity

permutation is e and the reversal πmax ∈ Sn is given by πmax(i) = n+1− i. An

inversion of a permutation π is a pair (i, j) for which i < j but π(i) > π(j).

A descent of π is an index i, 1 ≤ i ≤ n − 1, such that π(i + 1) < π(i) (so
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that (i, i+1) is an inversion). Let i(π) (resp. d(π)) be the number of inversions

(resp. descents) of π. It is well known (11) that

∑

π∈Sn

qi(π) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

On the other hand, the polynomial

An(q) =
∑

π∈Sn

q1+d(π)

is known as the Eulerian polynomial and its qk coefficient is denoted by A(n, k)

(an Eulerian number).

Local ranks (Appendix 8.4) define the Bruhat order in Sn: π̃ ≤ π if and

only if rSW (Pπ̃) is entry-wise less than or equal to rSW (Pπ). Similarly, we write

π̃ < π if π̃ ≤ π, π̃ 6= π. Also, π̃ is an immediate predecessor of π if π̃ < π and

there exists no permutation π̂ with π̃ < π̂ < π. It is easy to see that π̃ is an

immediate predecessor of π if and only if the following conditions hold. First,

there exist indices i1 < i2 and j1 < j2 such that the matrices Pπ1
and Pπ2

differ

only in the entries

(Pπ̃)(i1,j1) = 1, (Pπ̃)(i1,j2) = 0, (Pπ̃)(i2,j1) = 0, (Pπ̃)(i2,j2) = 1,

(Pπ)(i1,j1) = 0, (Pπ)(i1,j2) = 1, (Pπ)(i2,j1) = 1, (Pπ)(i2,j2) = 0.

Second, these are the only nonzero entries of the submatrices of Pπ̃ and Pπ at

the intersection of rows i1, . . . , i2 and columns j1, . . . , j2. In particular, if π̃ is

an immediate predecessor of π then i(π) = i(π̃) + 1.

8.6

Stable and unstable manifolds

Let M be a closed smooth manifold of dimension n and X a smooth

vector field in M with flow φ(u, t), u ∈ M, t ∈ R. For an equilibrium p ∈ M

(i.e., a point at which X(p) = 0), consider the linearization of X, DX(p),

which in turn is a vector field on the tangent space TMp having the origin as

an equilibrium. The equilibrium is hyperbolic if no eigenvalue of DX(p) has

zero real part. The stable and unstable manifolds at p are the sets

Ws(p) = {u ∈M | lim
t→∞

φ(u, t) = p}, Wu(p) = {u ∈M | lim
t→−∞

φ(u, t) = p}.

From the so called stable manifold theorem, at a hyperbolic equilibrium

p, both sets are indeed smooth manifolds and their tangent spaces at p
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are naturally identified with the tangent spaces of the stable and unstable

manifolds of DX(p) at 0.

8.7

Transition maps

Consider π and its immediate predecessor π̃, differing by the inversion

(i, i + 1), in the sense that Pπ̃ = PπP , where P is the matrix associated to

the inversion. Let S ∈ Uπ
O ∪ U π̃

O. We relate the triangular matrices Bπ̃ and Bπ

associated to S. Write

S = QT
π ΛπQπ = QT

π̃ Λπ̃Qπ̃

for LU -positive orthogonal matrices Qπ̃ and Qπ. Since

Λπ̃ = P−1
π̃ ΛPπ̃ = PP−1

π ΛPπP = PΛπP,

we learn that S = QT
π̃ PΛπPQπ̃ and Qπ = EPQπ̃ for some sign diagonal matrix

E. Now LU -decompose, Qπ = LπUπ = E(PLπ̃)Uπ̃, so that PLπ̃ also admits

an LU -decomposition PLπ̃ = L̃Ũ . Thus

LπUπ = E(L̃Ũ)Uπ̃ = (EL̃E)(EŨUπ̃)

and from uniqueness of the LU -decomposition of an LU -positive matrix

and the fact that EL̃E is lower unipotent, we learn that Lπ = EL̃E and

Uπ = EŨUπ̃. Now,

Bπ = L−1
π ΛπLπ = EL̃−1EΛπEL̃E

= E(ŨL−1
π̃ P )EΛπE(PLπ̃Ũ−1)E = EŨBπ̃Ũ−1E.

Now, P is essentially the identity matrix, up to a 2×2 permutation block

in the intersection of two consecutive rows and columns i and i + 1. Simple

computations imply that the decomposition PLπ̃ = L̃Ũ is given in block form

(for blocks denoted by [.]i,j) by







[PLπ̃]1,1 0 0

[PLπ̃]2,1 [PLπ̃]2,2 0

[PLπ̃]3,1 [PLπ̃]3,2 [PLπ̃]3,3






=







∗ 0 0

∗ [L̃]2,2 0

∗ ∗ ∗













I 0 0

0 [Ũ ]2,2 0

0 0 I






.
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Explicitly, the LU -decomposition of [PLπ̃]2,2 = [L̃]2,2[Ũ ]2,2 is

[PLπ̃]2,2 =

(

α 1

1 0

)

=

(

1 0
1
α

1

)(

α 1

0 −1
α

)

= [L̃]2,2[Ũ ]2,2,

where α is the (i + 1, i)-entry of Lπ̃. To compute α, recall that Bπ =

EŨBπ̃Ũ−1E: the equality of entries (i, i + 1) on both sides gives

α =
βπ̃

i+1,i

λi+1 − λi

.

Since the hypothesis guarantee the existence of the LU -decompositions, we

learn in particular that α 6= 0.

We now specialize to TΛ. There are three cases regarding the inversion

(i, +1): either i = 1 or i = n− 1 or 1 < i < n− 1. We treat the last case first.

The matrix Ũ is known, from the explicit form for [Ũ ]2,2 obtained above.

Also, E is necessary in order that the matrix Uπ = EŨUπ̃ has positive diagonal.

Since Uπ̃ has positive diagonal, Ej,j = 1 for j 6= i, i + 1, Ei,i = sgn α and

Ei+1,i+1 = − sgn α. Equating entries in Bπ = EŨBπ̃Ũ−1E,

βπ
j+1,j = βπ̃

j+1,j, j 6= i− 1, i, i + 1,

βπ
i,i−1 = (sgn α)αβπ̃

i,i−1, βπ
i+1,i =

βπ̃
i+1,i

α2
, βπ

i+2,i+1 = (sgn α)αβπ̃
i+2,i+1.

Now take i + 1, the case i = n − 1 being similar. In this case, only the

first two coordinates change,

βπ
2,1 =

βπ̃
2,1

α2
, βπ

3,2 = (sgn α)αβπ̃
3,2.

8.8

Orientability of TΛ

We need a preliminary fact of independent interest. Recall that a tridiag-

onal matrix T is unreduced if its off-diagonal entries Ti+1,i, Ti,i+1 are different

from zero and that, for any chart Uπ
T , the triangular matrix Bπ is lower bidi-

agonal with off-diagonal entries βπ
i+1,i.

Proposition 33 Unreduced matrices belong to all charts Uπ
T .

Proof: The proof requires two facts. The first one follows from the change

of charts in Appendix 8.7: if βπ
i+1,i 6= 0, then βπ̃

i+1,i 6= 0, for a permutation

π and its immediate predecessor π̃. Thus the property holds when changing
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between arbitrary charts, and bidiagonal matrices whose triangular coordinates

at entries (i + 1, i) are nonzero then belong to any chart domain Uπ
T .

The second fact is that βπ
i+1,i = 0 for some chart π if and only if,

for the associated matrix T , one has Ti+1,i = 0. This follows directly from

the fact that T is a conjugation of Bπ by an upper triangular matrix. Thus

the unreduced tridiagonal matrices are exactly those for which the nontrivial

triangular coordinates at entries (i + 1, i) are nonzero. �

We return to the proof of orientability of TΛ. Since every chart domain

Uπ
T is dense in TΛ, we do not have to check the compatibility between arbitrary

pairs of charts. Instead, we only consider the change of charts between φπ̃ and

φπ, for permutations differing by an inversion of consecutive elements, so that

the matrices Pπ and Pπ induced by the permutations are related by Pπ = PπP

where P = P−1 is associated to the permutation (i, i + 1). This is exactly the

context of Appendix 8.7.

Each Uπ
T gets an orientation by pushing forward one of the two orienta-

tions of R
n−1 by φπ: take the standard orientation or the other, according to

the evenness of the permutation π.

Thus, it suffices to check that the map

((βπ
2,1, . . . , β

π
n,n−1), +) 7→ ((βπ

2,1, . . . , β
π
n,n−1),−)

is orientation preserving, where the signs are reminders of the opposite orien-

tations chosen for R
n−1 in the domain and image.

Again, there are three cases i = 1 or i = n − 1 or 1 < i < n − 1 for the

inversion (i, i + 1) and we start with the last.

Simply compute the Jacobian of the map which shows how entries βπ
i,i−1,

βπ
i+1,i and βπ

i+2,i+1 vary, keeping in mind the expression of α in terms of βπ
i+1,i:









(sgn α)βπ
i+1,i

λi+1−λi

(sgn α)
λi+1−λi

βπ
i,i−1 0

0 −(λi+1−λi)
2

(βπ
i+1,i

)2
0

0
(sgn α)βπ

i+2,i+1

λi+1−λi

(sgn α)βπ
i+1,i

λi+1−λi









,

whose determinant is always negative, showing that the orientations prescribed

for Uπ
T and Uρ

T are indeed compatible.

Now take i + 1: i = n − 1 is similar. Take derivatives of the first two

coordinates,




−(λi+1−λi)
2

(βπ
i+1,i

)2
0

(sgn α)βπ
i+2,i+1

λi+1−λi

(sgn α)βπ
i+1,i

λi+1−λi



 ,

and the determinant is negative again, finally yielding the orientability of TΛ.
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