6

Computing homologies

In this section we compute the homologies $H_{*}\left(\mathcal{T}_{\Lambda} ; \mathbb{Z}\right)$ and $H_{*}\left(\mathcal{O}_{\Lambda} ; \mathbb{Z} / 2 \mathbb{Z}\right)$ via height functions \tilde{h}_{D} and h_{D}, the Toda Flow and Morse Theory. The approach is similar for both cases. Choose a real, diagonal matrix D with diagonal entries in (strictly) decreasing order for which the associated height function $h(S)=\operatorname{tr}(D S)$ (either \tilde{h}_{D} or h_{D}) has distinct critical values $c_{\pi}=$ $\operatorname{tr}\left(D \Lambda^{\pi}\right)$ indexed by permutations $\pi \in S_{n}{ }^{1}$. In particular, c_{e} and $c_{\pi_{\max }}$ are respectively (global) minimum and maximum of h, where e is the identity permutation and $\pi_{\max }(j)=n+1-j$ is the reversal permutation. Take $\epsilon>0$ such that, for all $\pi_{1} \neq \pi_{2},\left|c_{\pi_{1}}-c_{\pi_{2}}\right|>2 \epsilon$. As usual, we compute the homology of the nested manifolds with boundary $M_{\pi}^{ \pm}=h^{-1}\left(\left(-\infty, c_{\pi} \pm \epsilon\right]\right)$. Clearly, $M_{e}^{-}=\emptyset$ and $M=M_{\pi_{\max }}^{+}$is either \mathcal{T}_{Λ} or \mathcal{O}_{Λ}. Also, for consecutive values $c_{\pi_{1}}<c_{\pi_{2}}$, the manifolds $M_{\pi_{1}}^{+}$and $M_{\pi_{2}}^{-}$are diffeomorphic (10). The homologies of M_{π}^{-}and M_{π}^{+}are related by the long exact sequence (9) of the pair $\left(M_{\pi}^{+}, M_{\pi}^{-}\right)$:

Here $A=\mathbb{Z}$ (resp. $\mathbb{Z} / 2 \mathbb{Z})$ for $M=\mathcal{T}_{\Lambda}$ (resp. \mathcal{O}_{Λ}). If the critical point Λ^{π} has index i, M_{π}^{+}is homotopically equivalent to a space obtained from M_{π}^{-}by attaching an i-cell (10). This allows us to compute the relative homology of the pair $\left(M_{\pi}^{+}, M_{\pi}^{-}\right)$:

$$
H_{k}\left(M_{\pi}^{+}, M_{\pi}^{-} ; A\right) \simeq H_{k}\left(\mathbb{B}^{i}, \mathbb{S}^{i-1} ; A\right) \simeq \begin{cases}A & \text { if } k=i \\ 0 & \text { if } k \neq i\end{cases}
$$

[^0]Lemma 20 Let i be the index of the critical point Λ^{π}. Then the connecting homomorphism $\partial: H_{i}\left(M_{\pi}^{+}, M_{\pi}^{-} ; A\right) \rightarrow H_{i-1}\left(M_{\pi}^{-} ; A\right)$ is zero.

Proof: We first recall the topological meaning of the connecting homomorphism ∂. Start with an element a of $H_{i}\left(M_{\pi}^{+}, M_{\pi}^{-} ; A\right)$: a representative of a is given by a linear combination \tilde{a} of i-simplices in M_{π}^{+}with boundary contained in M_{π}^{-}. The boundary \tilde{b} of \tilde{a} (a linear combination of $i-1$ simplices, the faces) is clearly closed in $C_{i-1}\left(M_{\pi}^{-}\right)$and therefore represents an element $b \in H_{i-1}\left(M_{\pi}^{-} ; A\right): b$ is ∂a. In our context, we may take \tilde{a} to be the closure of $W_{s}\left(\Lambda^{\pi}\right) \backslash M_{\pi}^{-}$and therefore \tilde{b} is the intersection of $W_{s}\left(\Lambda^{\pi}\right)$ with the boundary of M_{π}^{-}.

In the case \mathcal{T}_{Λ}, Theorem 17 implies that the closure of $W_{s}\left(\Lambda^{\pi}\right)$ is a compact orientable manifold $N_{\pi}: \tilde{b}$ is the boundary of $N_{\pi} \cap M_{\pi}^{-}$and therefore exact in $C_{i-1}\left(M_{\pi}^{i}\right)$. Thus, in this case, $\partial=0$.

From Morse theory, $H_{*}\left(\mathcal{O}_{\Lambda} ; \mathbb{Z} / 2 \mathbb{Z}\right)$ is spanned by the stable manifolds $W_{s}(\pi)$ associated to the critical points Λ^{π} of the Toda flow. The closures of $W_{s}(\pi)$ are not manifolds with boundary, but they are still homotopic to polyhedra.

The Bruhat ordering $\tilde{\pi} \leq \pi$ is equivalent to the inclusion $W_{s}(\tilde{\pi}) \subset \overline{W_{s}}(\pi)$. Also, by Proposition 19, if $W_{s}(\tilde{\pi}) \subset \overline{W_{s}}(\pi)$ and the dimensions of $W_{s}(\tilde{\pi})$ and $W_{s}(\pi)$ differ by one then $\tilde{\pi}$ is an immediate predecessor of π. Said differently, in order to study the connecting homomorphism $\partial: H_{k}\left(M_{\pi}^{+}, M_{\pi}^{-}\right) \rightarrow H_{k-1}\left(M_{\pi}^{-}\right)$ it suffices to study $W_{s}(\pi)$ in a neighborhood of each $W_{s}(\tilde{\pi}), \tilde{\pi}$ an immediate predecessor of π.

We show the triviality of the connecting homomorphism ∂ in a sufficiently rich example. Let $\tilde{\pi}$ and π be given by

$$
P_{\bar{\pi}}=\left(\begin{array}{lllllll}
& & & 1 & & & \\
& & \underline{\mathbf{1}} & & \underline{\mathbf{0}} & & \\
1 & & & & & \\
& 1 & & & & \\
& & & & & 1 & \\
& & & & & & 1 \\
& & \underline{\mathbf{0}} & & \underline{\mathbf{1}} & & \\
& & & & 1 & &
\end{array}\right), \quad P_{\pi}=\left(\begin{array}{llllll}
& & & 1 & & \\
& & \underline{\mathbf{0}} & & \underline{\mathbf{1}} & \\
1 & & & & & \\
& 1 & & & & \\
& & & & & 1 \\
& & & & & \\
& & \underline{\mathbf{1}} & & \underline{\mathbf{0}} & \\
& & & & 1 & \\
&
\end{array}\right) .
$$

The fact that the interior of the rectangle with underlined vertices contains no nonzero entries indicates that $\tilde{\pi}$ is an immediate predecessor of π. The $\operatorname{set} \mathcal{U}_{\mathcal{O}}^{\tilde{\mathcal{O}}}$ is an open neighborhood of $W_{s}(\tilde{\pi})$: we shall study the sets $W_{s}(\tilde{\pi})$ and $W_{s}(\pi) \cap \mathcal{U}_{\mathcal{O}}^{\tilde{\tilde{O}}}$.

For $S=Q^{T} \Lambda Q \in \mathcal{U}_{\mathcal{O}}^{\tilde{\pi}}$, write $Q=P_{\tilde{\pi}} L_{\tilde{\pi}} U_{\tilde{\pi}}$; conversely, given

$$
\tilde{L}=P_{\tilde{\pi}} L_{\tilde{\pi}}=\left(\begin{array}{ccccccccc}
x_{11} & x_{12} & x_{13} & 1 & & & & \\
x_{21} & x_{22} & \underline{1} & & & & & \\
1 & & & & & & & \\
x_{41} & 1 & & & & & & \\
x_{51} & x_{52} & x_{53} & x_{54} & x_{55} & x_{56} & 1 & \\
x_{61} & x_{62} & x_{63} & x_{64} & x_{65} & x_{66} & x_{67} & 1 \\
x_{71} & x_{72} & x_{73} & x_{74} & x_{75} & \underline{\mathbf{1}} & & \\
x_{81} & x_{82} & x_{83} & x_{84} & 1 & & &
\end{array}\right),
$$

let $Q=\mathbf{Q}(\tilde{L})$ and $S=Q^{T} \Lambda Q$ thus defining a diffeomorphism ξ from $\mathbb{R}^{n(n-1) / 2}$ to $\mathcal{U}_{\mathcal{O}}^{\tilde{\tilde{O}}}$. Recall that $S=Q^{T} \Lambda Q$ belongs to $W_{s}(\tilde{\pi})$ (resp. $\left.W_{s}(\pi)\right)$ if and only if $\mathcal{B}_{S W}(Q)=\mathcal{B}_{S W}\left(P_{\tilde{\pi}} L_{\tilde{\pi}}\right)=P_{\tilde{\pi}}\left(\right.$ resp. $\left.\mathcal{B}_{S W}(Q)=\mathcal{B}_{S W}\left(P_{\tilde{\pi}} L_{\tilde{\pi}}\right)=P_{\pi}\right)$. Thus, $W_{s}^{\tilde{\pi}}$ is the image under ξ of the subspace

$$
\tilde{L}=\left(\begin{array}{cccccccc}
x_{11} & x_{12} & x_{13} & 1 & & & & \\
x_{21} & x_{22} & \underline{1} & & & & & \\
1 & & & & & & & \\
0 & 1 & & & & & & \\
0 & 0 & 0 & 0 & x_{55} & x_{56} & 1 & \\
0 & 0 & 0 & 0 & x_{65} & x_{66} & 0 & 1 \\
0 & 0 & 0 & 0 & x_{75} & \underline{\mathbf{1}} & & \\
0 & 0 & 0 & 0 & 1 & & &
\end{array}\right)
$$

where $x_{i j}$ is arbitrary if its row (resp. column) contains a 1 to its right (resp. below), or, equivalently, if $\left(j, \tilde{\pi}^{-1}(i)\right)$ is an inversion of $\tilde{\pi}$. Similarly, $W_{s}^{\pi} \cap \mathcal{U}_{\mathcal{O}}^{\tilde{\pi}}$ is the image under ξ of

$$
\tilde{L}=\left(\begin{array}{cccccccc}
x_{11} & x_{12} & x_{13} & 1 & & & & \\
x_{21} & x_{22} & \underline{1} & & & & & \\
1 & & & & & & & \\
0 & 1 & & & & & & \\
0 & 0 & x_{73} x_{56} & 0 & x_{55} & x_{56} & 1 & \\
0 & 0 & x_{73} x_{66} & 0 & x_{65} & x_{66} & 0 & 1 \\
0 & 0 & \frac{x_{73}}{0} & 0 & x_{75} & \underline{\mathbf{1}} & & \\
0 & 0 & 0 & 0 & 1 & &
\end{array}\right), \quad x_{73} \neq 0
$$

Indeed, for all such matrices \tilde{L}, we have $\mathcal{B}_{S W}(\tilde{L})=P_{\pi}$, proving that the image is contained in $W_{s}^{\pi} \cap \mathcal{U}_{\mathcal{O}}^{\tilde{\mathcal{O}}}$. Conversely, given \tilde{L} with $\mathcal{B}_{S W}(\tilde{L})=P_{\pi}$ (so that $\xi(\tilde{L}) \in W_{s}^{\pi}$), we must show that \tilde{L} has the form above. For instance,
$\left(r_{S W}(\tilde{L})\right)_{41}=\left(r_{S W}(\tilde{L})\right)_{52}=\left(r_{S W}(\tilde{L})\right)_{84}=0$ imply that $(\tilde{L})_{i j}=0$ for entries 41,51, 61, 71, 81, 52, 62, 72, 82, 83, 84. On the other hand, $\left(r_{S W}(\tilde{L})\right)_{73}=$ 1 implies $(\tilde{L})_{73}=x_{73} \neq 0$. From $\left(r_{S W}(\tilde{L})\right)_{24}=3$ and the fact that the first three entries of rows $2,3,4$ are linearly independent it follows that $(\tilde{L})_{i j}=0$ for entries $54,64,74$. Finally, $\left(r_{S W}(\tilde{L})\right)_{56}=2$ implies the indicated values at entries 53,63 .

In general, free entries for $\xi(\tilde{L}) \in W_{s}(\tilde{\pi})$ remain free for $\xi(\tilde{L}) \in W_{s}(\pi)$. Also, the south-west corner of the underlined rectangle becomes free and nonzero. Some entries which were zero for $\xi(\tilde{L}) \in W_{s}(\tilde{\pi})$ become smooth functions of the free entries.

Thus, the triple $W_{s}(\tilde{\pi}) \subset \overline{W_{s}}(\pi) \cap \mathcal{U}_{\mathcal{O}}^{\tilde{\pi}} \subset \mathcal{U}_{\mathcal{O}}^{\tilde{\tilde{\pi}}}$ is diffeomorphic to $\mathbb{R}^{i(\tilde{\pi})} \subset$ $\mathbb{R}^{i(\pi)} \subset \mathbb{R}^{n(n-1) / 2}$. Thus, Bruhat cells of codimension 1 always come up in pairs and since we are working with coefficients in $\mathbb{Z} / 2 \mathbb{Z}, \partial=0$.

Theorem 21 Let m_{k} (resp. n_{k}) be the number of permutations $\pi \in S_{n}$ with k inversions (resp. descents). Then

$$
H_{k}\left(\mathcal{O}_{\Lambda} ; \mathbb{Z} / 2 \mathbb{Z}\right)=(\mathbb{Z} / 2 \mathbb{Z})^{m_{k}}, \quad H_{k}\left(\mathcal{T}_{\Lambda} ; \mathbb{Z}\right)=\mathbb{Z}^{n_{k}}
$$

Proof: Again, say Λ^{π} is a critical point of index i. Suppose first that $k, k+1 \neq i$: from the long exact sequence of the pair, we obtain

$$
0 \longrightarrow H_{k}\left(M_{\pi}^{-} ; A\right) \longrightarrow H_{k}\left(M_{\pi}^{+} ; A\right) \longrightarrow 0
$$

which implies that $H_{k}\left(M_{\pi}^{-} ; A\right) \simeq H_{k}\left(M_{\pi}^{+} ; A\right)$. Now, if $k+1=i$, from the triviality of ∂ proved in Lemma 20, the sequence

$$
H_{i}\left(M_{\pi}^{+}, M_{\pi}^{-} ; A\right) \simeq A \xrightarrow{\partial} H_{i-1}\left(M_{\pi}^{-} ; A\right) \longrightarrow H_{i-1}\left(M_{\pi}^{+} ; A\right) \longrightarrow 0
$$

yields $H_{i-1}\left(M_{\pi}^{-} ; A\right) \simeq H_{i-1}\left(M_{\pi}^{+} ; A\right)$. Finally, if $k=i$, again from Lemma 20, we obtain an exact sequence at the three intermediate stages,

$$
0 \longrightarrow H_{i}\left(M_{\pi}^{-} ; A\right) \longrightarrow H_{i}\left(M_{\pi}^{+} ; A\right) \longrightarrow A \xrightarrow{\partial} 0
$$

Since A is a free A-modulus, the sequence splits and

$$
H_{i}\left(M_{\pi}^{+} ; A\right) \simeq H_{i}\left(M_{\pi}^{-} ; A\right) \oplus A
$$

Thus, a critical point of index i contributes (freely) with a generator of $H_{i}(M ; A)$ and the theorem is proved.

[^0]: ${ }^{1}$ Notations and facts about permutations are given in Appendix 8.5

