2 The manifolds \mathcal{O}_{Λ} and \mathcal{T}_{Λ}

Throughout this chapter $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ will be a real $n \times n$ diagonal matrix with simple spectrum. Let \mathcal{O}_{Λ} be the set of real symmetric matrices conjugate to Λ and \mathcal{T}_{Λ} be the subset of \mathcal{O}_{Λ} consisting of tridiagonal matrices.

We first prove that both sets are indeed manifolds. For \mathcal{O}_{Λ} , this follows from a simple application of the implicit function theorem, but the first proof for \mathcal{T}_{Λ} was more delicate (12). Here, instead, we provide an atlas for each space, following (8).

2.1 Triangular coordinates

The triangular coordinates were originally intended for \mathcal{T}_{Λ} in (8), where they are called bidiagonal coordinates, but they turn out to be a much more general construct.

Diagonalize $S \in \mathcal{O}_{\Lambda}$ as $S = Q^T \Lambda Q$ with Q orthogonal. The matrix Q is defined only up to left multiplication by a sign diagonal matrix E. Let $\mathcal{U}_{\mathcal{O}} \subset \mathcal{O}_{\Lambda}$ be the set of matrices S for which the related Q (or any EQ) admits an LUdecomposition. Thus, for $S \in \mathcal{U}_{\mathcal{O}}$, there is indeed a (unique) decomposition $S = Q^T \Lambda Q$ such that Q is LU-positive (see Appendix 8.4). More generally, given a permutation $\pi \in S_n$, let $\Lambda^{\pi} = \text{diag}(\lambda_{\pi(1)}, \ldots, \lambda_{\pi(n)})$ and $\mathcal{U}_{\mathcal{O}}^{\pi} \subset \mathcal{O}_{\Lambda}$ be the set of matrices S admitting a spectral decomposition $S = Q_{\pi}^T \Lambda^{\pi} Q_{\pi}$ for an orthogonal LU-positive matrix Q_{π} . Clearly each $\mathcal{U}_{\mathcal{O}}^{\pi}$ is an open, dense subset of \mathcal{O}_{Λ} and their union covers \mathcal{O}_{Λ} .

Now, for $S \in \mathcal{U}_{\mathcal{O}}^{\pi}$, write the (unique) diagonalization $S = Q_{\pi}^{T} \Lambda^{\pi} Q_{\pi}$ where Q_{π} is an orthogonal *LU*-positive matrix and *LU*-decompose $Q_{\pi} = L_{\pi} U_{\pi}$ so that L_{π} is lower triangular unipotent and the upper triangular matrix U_{π} has

positive diagonal. Set $B_{\pi} = L_{\pi}^{-1} \Lambda^{\pi} L_{\pi} = U_{\pi} S U_{\pi}^{-1}$, so B_{π} is lower triangular:

$$B_{\pi} = \begin{pmatrix} \lambda_{\pi(1)} & & & \\ \beta_{2,1}^{\pi} & \lambda_{\pi(2)} & & \\ \beta_{3,1}^{\pi} & \beta_{3,2}^{\pi} & \lambda_{\pi(3)} & \\ \vdots & & \ddots & \ddots & \\ \beta_{n,1}^{\pi} & \beta_{n,2}^{\pi} & \dots & \beta_{n,n-1}^{\pi} & \lambda_{\pi(n)} \end{pmatrix}$$

Proposition 1 There is a diffeomorphism $\phi_{\pi} \colon \mathbb{R}^{N} \to \mathcal{U}_{\mathcal{O}}^{\pi}$ taking the entries $\beta_{i,j}^{\pi}, i = 2, \ldots, n, j = 1, \ldots, i-1$, to $S \in \mathcal{U}_{\mathcal{O}}^{\pi}$. Here $N = \frac{n(n-1)}{2}$.

Proof: With the numbers $\beta_{i,j}^{\pi}$, construct B_{π} as above. Now diagonalize $B_{\pi} = L_{\pi}^{-1} \Lambda^{\pi} L_{\pi}$, which can be done in a unique fashion such that L_{π} is unipotent. Now consider the (unique) QR-decomposition $L_{\pi} = Q_{\pi}R_{\pi}$, where Q_{π} is orthogonal and R_{π} is upper triangular with positive diagonal. Since $Q_{\pi} = L_{\pi}R_{\pi}^{-1}$, we see that Q_{π} is LU-positive. Finally set $S = Q_{\pi}^{T}\Lambda^{\pi}Q_{\pi}$, clearly a matrix in $\mathcal{U}_{\mathcal{O}}^{\pi}$. To go from S to B_{π} , proceed as described previously. By construction, both maps are inverse to each other.

We now specialize the above construction for tridiagonal matrices $T \in \mathcal{T}_{\Lambda}$ — which values of the triangular coordinates $\beta_{i,j}$ give rise to such a T? Given $\pi \in S_n$, let $\mathcal{U}_T^{\pi} \subset \mathcal{T}_{\Lambda}$ be the set of matrices T admitting a spectral decomposition $T = Q_{\pi}^T \Lambda^{\pi} Q_{\pi}$, for some orthogonal, LU-positive matrix Q_{π} . As before, each \mathcal{U}_T^{π} is an open, dense subset of \mathcal{T}_{Λ} (and each contains all matrices in \mathcal{T}_{Λ} with nonzero off-diagonal entries) and their union covers \mathcal{T}_{Λ} . The only real difference is that since

$$B_{\pi} = L_{\pi}^{-1} \Lambda^{\pi} L_{\pi} = U_{\pi} T U_{\pi}^{-1},$$

from the first equality B_{π} is lower triangular and, from the second, it is upper Hessenberg (a real square matrix H is upper Hessenberg if $H_{ij} = 0$ whenever i > j+1): B_{π} must be lower bidiagonal! The following proposition is immediate.

Proposition 2 There is a diffeomorphism $\phi_{\pi} \colon \mathbb{R}^{n-1} \to \mathcal{U}_{T}^{\pi}$ taking the entries $\beta_{i,i-1}^{\pi}, i = 2, \ldots, n$, to $T \in \mathcal{U}_{T}^{\pi}$.

Proposition 3 The sets \mathcal{O}_{Λ} and \mathcal{T}_{Λ} are compact, connected, orientable manifolds of dimension $N = \frac{n(n-1)}{2}$ and n-1, respectively.

Proof: Charts were provided for both spaces. Compactness follows from the fact that both spaces are closed in S_n and lie in a sphere of radius $\|\Lambda\| = \sqrt{\mathrm{tr}\Lambda^2}$

centered at the origin. Connectivity of \mathcal{O}_{Λ} follows from the connectivity of SO(n), proved in Appendix 8.3, since \mathcal{O}_{Λ} is the image of the continuous function

$$\begin{array}{rccc} F\colon & SO(n) & \to & \mathcal{O}_{\Lambda} \\ & Q & \mapsto & Q^T \Lambda Q \end{array}$$

To compute the tangent space of \mathcal{O}_{Λ} at a matrix S, take curves of the form $S(t) = e^{-tA}Se^{tA}$ for skew-symmetric matrices A, which clearly stay in \mathcal{O}_{Λ} and satisfy S(0) = S. Differentiating, we learn that the matrices [S, A] are tangent vectors. Once we show that such vectors are independent, this has to be the full tangent space, since the vector space of skew-symmetric matrices also has dimension N. Now, suppose [S, A] = 0 for some skew-symmetric matrix A. This means that A commutes with S, which in turn has simple spectrum. From Lemma 4 below, A must be a function of S, and thus, symmetric. But the only matrix which is simultaneously symmetric and skew-symmetric is 0. This also provides orientability, by identifying N independent vector fields along \mathcal{O}_{Λ} : just take a basis A_i of skew-symmetric matrices and consider the vector field $[S, A_i]$.

We now consider the connectivity of \mathcal{T}_{Λ} . Take $T \in \mathcal{T}_{\Lambda}$, hence, in some \mathcal{U}_T^{π} . In triangular coordinates, join T to the diagonal matrix Λ^{π} . We only need to construct paths joining diagonal matrices Λ^{π_1} and Λ^{π_2} . This is easy to accomplish if π_2 differs from π_1 by an inversion of consecutive diagonal entries i and i + 1. The path in this case is simple: it consists of a conjugation of Λ^{π_1} by a rotation in the (i, i + 1)-plane, which clearly stays within \mathcal{T}_{Λ} . Arbitrary permutations π_2 differ from π_1 by a product of inversions and connectivity follows.

Finally, the proof that \mathcal{T}_{Λ} is orientable is given in Appendix 8.8.

In the proof above, and later in the text, we use the following fact from linear algebra.

Lemma 4 Let $A \in \mathcal{M}_n$ have simple spectrum. Then A and B commute if and only if B is a polynomial of A, B = p(A).

Proof: Write $A = PDP^{-1}$ where D is a diagonal matrix with the eigenvalues of A. Then,

$$[A, B] = 0 \Leftrightarrow (PDP^{-1})B = B(PDP^{-1}) \Leftrightarrow D(P^{-1}BP) = (P^{-1}BP)D.$$

But D is a diagonal matrix with simple spectrum, so

$$[D, P^{-1}BP] = 0 \Leftrightarrow P^{-1}BP = \tilde{D}$$

with D also a diagonal matrix. Finally,

$$P^{-1}BP = \tilde{D} \Leftrightarrow B = P\tilde{D}P^{-1} = p(A)$$

for some polynomial p.

The manifold \mathcal{O}_{Λ} is special in many senses. Thus, for example, it is an *adjoint orbit* — a matter not considered in this text — and this allowed the computation of its homology by Faybusovich (4) following general ideas of Bott.

Proposition 5 If the spectrum of Λ is simple, SO(n) is a covering space for \mathcal{O}_{Λ} .

Proof: The function

$$\begin{array}{rccc} F \colon & SO(n) & \to & \mathcal{O}_{\Lambda} \\ & Q & \mapsto & Q^T \Lambda Q \end{array}$$

fails to be injective: F(Q) = F(W) whenever $(WQ^T)\Lambda = \Lambda(WQ^T)$. This means that WQ^T is a function of Λ (hence diagonal, from Lemma 4) and orthogonal, so Q = WE for some sign diagonal matrix E with unit determinant.

Let us check that F is a covering map for \mathcal{O}_{Λ} with fibers consisting of 2^{n-1} elements. The continuity and surjectivity of F are obvious. From Appendix 8.3, $T_Q SO(n) = Q \mathcal{A}_n^{-1}$, and the derivative at $Q \in SO(n)$ along QA is given by

$$DF(Q)(QA) = -AQ^T\Lambda Q + Q^T\Lambda QA = [F(Q), A].$$

It is easy to see then that DF(Q) is an isomorphism between tangent spaces. From the inverse function theorem, F is a local diffeomorphism and we are done.

We have not yet computed the tangent spaces of \mathcal{T}_{Λ} : this will be easier once we have introduced the Toda flows. However, the tangent space $T_D \mathcal{T}_{\Lambda}$ at a diagonal matrix $D \in \mathcal{T}_{\Lambda}$ is easily seen to be the (n-1)-dimensional vector space of tridiagonal symmetric matrices with a null main diagonal.

¹For notation used throughout this text, see Appendix 8.