
2

The manifolds OΛ and TΛ

Throughout this chapter Λ = diag(λ1, . . . , λn) will be a real n×n diagonal

matrix with simple spectrum. Let OΛ be the set of real symmetric matrices

conjugate to Λ and TΛ be the subset of OΛ consisting of tridiagonal matrices.

We first prove that both sets are indeed manifolds. For OΛ, this follows

from a simple application of the implicit function theorem, but the first proof

for TΛ was more delicate (12). Here, instead, we provide an atlas for each space,

following (8).

2.1

Triangular coordinates

The triangular coordinates were originally intended for TΛ in (8), where

they are called bidiagonal coordinates, but they turn out to be a much more

general construct.

Diagonalize S ∈ OΛ as S = QT ΛQ with Q orthogonal. The matrix Q is

defined only up to left multiplication by a sign diagonal matrix E. Let UO ⊂ OΛ

be the set of matrices S for which the related Q (or any EQ) admits an LU -

decomposition. Thus, for S ∈ UO, there is indeed a (unique) decomposition

S = QT ΛQ such that Q is LU-positive (see Appendix 8.4). More generally,

given a permutation π ∈ Sn, let Λπ = diag(λπ(1), . . . , λπ(n)) and Uπ
O
⊂ OΛ be

the set of matrices S admitting a spectral decomposition S = QT
π ΛπQπ for an

orthogonal LU-positive matrix Qπ. Clearly each Uπ
O

is an open, dense subset

of OΛ and their union covers OΛ.

Now, for S ∈ Uπ
O
, write the (unique) diagonalization S = QT

π ΛπQπ where

Qπ is an orthogonal LU-positive matrix and LU -decompose Qπ = LπUπ so

that Lπ is lower triangular unipotent and the upper triangular matrix Uπ has
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The homology of some isospectral manifolds 15

positive diagonal. Set Bπ = L−1
π ΛπLπ = UπSU−1

π , so Bπ is lower triangular:

Bπ =



















λπ(1)

βπ
2,1 λπ(2)

βπ
3,1 βπ

3,2 λπ(3)

...
. . . . . .

βπ
n,1 βπ

n,2 . . . βπ
n,n−1 λπ(n)



















.

Proposition 1 There is a diffeomorphism φπ : R
N → Uπ

O
taking the entries

βπ
i,j, i = 2, . . . , n, j = 1, . . . , i− 1, to S ∈ Uπ

O
. Here N = n(n−1)

2
.

Proof: With the numbers βπ
i,j, construct Bπ as above. Now diagonalize

Bπ = L−1
π ΛπLπ, which can be done in a unique fashion such that Lπ is

unipotent. Now consider the (unique) QR-decomposition Lπ = QπRπ, where

Qπ is orthogonal and Rπ is upper triangular with positive diagonal. Since

Qπ = LπR−1
π , we see that Qπ is LU-positive. Finally set S = QT

π ΛπQπ, clearly

a matrix in Uπ
O
. To go from S to Bπ, proceed as described previously. By

construction, both maps are inverse to each other. �

We now specialize the above construction for tridiagonal matrices T ∈ TΛ

— which values of the triangular coordinates βi,j give rise to such a T?

Given π ∈ Sn, let Uπ
T
⊂ TΛ be the set of matrices T admitting a spectral

decomposition T = QT
π ΛπQπ, for some orthogonal, LU-positive matrix Qπ. As

before, each Uπ
T

is an open, dense subset of TΛ (and each contains all matrices

in TΛ with nonzero off-diagonal entries) and their union covers TΛ. The only

real difference is that since

Bπ = L−1
π ΛπLπ = UπTU−1

π ,

from the first equality Bπ is lower triangular and, from the second, it is upper

Hessenberg (a real square matrix H is upper Hessenberg if Hij = 0 whenever

i > j+1): Bπ must be lower bidiagonal! The following proposition is immediate.

Proposition 2 There is a diffeomorphism φπ : R
n−1 → Uπ

T
taking the entries

βπ
i,i−1, i = 2, . . . , n, to T ∈ Uπ

T
.

Proposition 3 The sets OΛ and TΛ are compact, connected, orientable man-

ifolds of dimension N = n(n−1)
2

and n− 1, respectively.

Proof: Charts were provided for both spaces. Compactness follows from the

fact that both spaces are closed in Sn and lie in a sphere of radius ‖Λ‖ =
√

trΛ2
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centered at the origin. Connectivity of OΛ follows from the connectivity of

SO(n), proved in Appendix 8.3, since OΛ is the image of the continuous

function
F : SO(n) → OΛ

Q 7→ QT ΛQ
.

To compute the tangent space of OΛ at a matrix S, take curves of the form

S(t) = e−tASetA for skew-symmetric matrices A, which clearly stay in OΛ and

satisfy S(0) = S. Differentiating, we learn that the matrices [S, A] are tangent

vectors. Once we show that such vectors are independent, this has to be the

full tangent space, since the vector space of skew-symmetric matrices also has

dimension N . Now, suppose [S, A] = 0 for some skew-symmetric matrix A.

This means that A commutes with S, which in turn has simple spectrum.

From Lemma 4 below, A must be a function of S, and thus, symmetric. But

the only matrix which is simultaneously symmetric and skew-symmetric is 0.

This also provides orientability, by identifying N independent vector fields

along OΛ: just take a basis Ai of skew-symmetric matrices and consider the

vector field [S, Ai].

We now consider the connectivity of TΛ. Take T ∈ TΛ, hence, in some

Uπ
T
. In triangular coordinates, join T to the diagonal matrix Λπ. We only

need to construct paths joining diagonal matrices Λπ1 and Λπ2 . This is easy to

accomplish if π2 differs from π1 by an inversion of consecutive diagonal entries

i and i + 1. The path in this case is simple: it consists of a conjugation of Λπ1

by a rotation in the (i, i + 1)-plane, which clearly stays within TΛ. Arbitrary

permutations π2 differ from π1 by a product of inversions and connectivity

follows.

Finally, the proof that TΛ is orientable is given in Appendix 8.8. �

In the proof above, and later in the text, we use the following fact from

linear algebra.

Lemma 4 Let A ∈Mn have simple spectrum. Then A and B commute if and

only if B is a polynomial of A, B = p(A).

Proof: Write A = PDP−1 where D is a diagonal matrix with the eigenvalues

of A. Then,

[A, B] = 0 ⇔ (PDP−1)B = B(PDP−1) ⇔ D(P−1BP ) = (P−1BP )D.

But D is a diagonal matrix with simple spectrum, so

[D, P−1BP ] = 0 ⇔ P−1BP = D̃
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with D̃ also a diagonal matrix. Finally,

P−1BP = D̃ ⇔ B = PD̃P−1 = p(A)

for some polynomial p. �

The manifold OΛ is special in many senses. Thus, for example, it is an

adjoint orbit — a matter not considered in this text — and this allowed the

computation of its homology by Faybusovich (4) following general ideas of

Bott.

Proposition 5 If the spectrum of Λ is simple, SO(n) is a covering space for

OΛ.

Proof: The function
F : SO(n) → OΛ

Q 7→ QT ΛQ

fails to be injective: F (Q) = F (W ) whenever (WQT )Λ = Λ(WQT ). This means

that WQT is a function of Λ (hence diagonal, from Lemma 4) and orthogonal,

so Q = WE for some sign diagonal matrix E with unit determinant.

Let us check that F is a covering map forOΛ with fibers consisting of 2n−1

elements. The continuity and surjectivity of F are obvious. From Appendix 8.3,

TQSO(n) = QAn
1, and the derivative at Q ∈ SO(n) along QA is given by

DF (Q)(QA) = −AQT ΛQ + QT ΛQA = [F (Q), A].

It is easy to see then that DF (Q) is an isomorphism between tangent spaces.

From the inverse function theorem, F is a local diffeomorphism and we are

done. �

We have not yet computed the tangent spaces of TΛ: this will be easier

once we have introduced the Toda flows. However, the tangent space TDTΛ at

a diagonal matrix D ∈ TΛ is easily seen to be the (n − 1)-dimensional vector

space of tridiagonal symmetric matrices with a null main diagonal.

1For notation used throughout this text, see Appendix 8.
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