2 The manifolds \mathcal{O}_{Λ} and \mathcal{T}_{Λ}

Throughout this chapter $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ will be a real $n \times n$ diagonal matrix with simple spectrum. Let \mathcal{O}_{Λ} be the set of real symmetric matrices conjugate to Λ and \mathcal{T}_{Λ} be the subset of \mathcal{O}_{Λ} consisting of tridiagonal matrices.

We first prove that both sets are indeed manifolds. For \mathcal{O}_{Λ}, this follows from a simple application of the implicit function theorem, but the first proof for \mathcal{T}_{Λ} was more delicate (12). Here, instead, we provide an atlas for each space, following (8).

2.1
 Triangular coordinates

The triangular coordinates were originally intended for \mathcal{T}_{Λ} in (8), where they are called bidiagonal coordinates, but they turn out to be a much more general construct.

Diagonalize $S \in \mathcal{O}_{\Lambda}$ as $S=Q^{T} \Lambda Q$ with Q orthogonal. The matrix Q is defined only up to left multiplication by a sign diagonal matrix E. Let $\mathcal{U}_{\mathcal{O}} \subset \mathcal{O}_{\Lambda}$ be the set of matrices S for which the related Q (or any $E Q$) admits an $L U$ decomposition. Thus, for $S \in \mathcal{U}_{\mathcal{O}}$, there is indeed a (unique) decomposition $S=Q^{T} \Lambda Q$ such that Q is $L U$-positive (see Appendix 8.4). More generally, given a permutation $\pi \in S_{n}$, let $\Lambda^{\pi}=\operatorname{diag}\left(\lambda_{\pi(1)}, \ldots, \lambda_{\pi(n)}\right)$ and $\mathcal{U}_{\mathcal{O}}^{\pi} \subset \mathcal{O}_{\Lambda}$ be the set of matrices S admitting a spectral decomposition $S=Q_{\pi}^{T} \Lambda^{\pi} Q_{\pi}$ for an orthogonal $L U$-positive matrix Q_{π}. Clearly each $\mathcal{U}_{\mathcal{O}}^{\pi}$ is an open, dense subset of \mathcal{O}_{Λ} and their union covers \mathcal{O}_{Λ}.

Now, for $S \in \mathcal{U}_{\mathcal{O}}^{\pi}$, write the (unique) diagonalization $S=Q_{\pi}^{T} \Lambda^{\pi} Q_{\pi}$ where Q_{π} is an orthogonal $L U$-positive matrix and $L U$-decompose $Q_{\pi}=L_{\pi} U_{\pi}$ so that L_{π} is lower triangular unipotent and the upper triangular matrix U_{π} has
positive diagonal. Set $B_{\pi}=L_{\pi}^{-1} \Lambda^{\pi} L_{\pi}=U_{\pi} S U_{\pi}^{-1}$, so B_{π} is lower triangular:

$$
B_{\pi}=\left(\begin{array}{ccccc}
\lambda_{\pi(1)} & & & & \\
\beta_{2,1}^{\pi} & \lambda_{\pi(2)} & & & \\
\beta_{3,1}^{\pi} & \beta_{3,2}^{\pi} & \lambda_{\pi(3)} & & \\
\vdots & & \ddots & \ddots & \\
\beta_{n, 1}^{\pi} & \beta_{n, 2}^{\pi} & \ldots & \beta_{n, n-1}^{\pi} & \lambda_{\pi(n)}
\end{array}\right) .
$$

Proposition 1 There is a diffeomorphism $\phi_{\pi}: \mathbb{R}^{N} \rightarrow \mathcal{U}_{\mathcal{O}}^{\pi}$ taking the entries $\beta_{i, j}^{\pi}, i=2, \ldots, n, j=1, \ldots, i-1$, to $S \in \mathcal{U}_{\mathcal{O}}^{\pi}$. Here $N=\frac{n(n-1)}{2}$.

Proof: With the numbers $\beta_{i, j}^{\pi}$, construct B_{π} as above. Now diagonalize $B_{\pi}=L_{\pi}^{-1} \Lambda^{\pi} L_{\pi}$, which can be done in a unique fashion such that L_{π} is unipotent. Now consider the (unique) $Q R$-decomposition $L_{\pi}=Q_{\pi} R_{\pi}$, where Q_{π} is orthogonal and R_{π} is upper triangular with positive diagonal. Since $Q_{\pi}=L_{\pi} R_{\pi}^{-1}$, we see that Q_{π} is $L U$-positive. Finally set $S=Q_{\pi}^{T} \Lambda^{\pi} Q_{\pi}$, clearly a matrix in $\mathcal{U}_{\mathcal{O}}^{\pi}$. To go from S to B_{π}, proceed as described previously. By construction, both maps are inverse to each other.

We now specialize the above construction for tridiagonal matrices $T \in \mathcal{T}_{\Lambda}$ - which values of the triangular coordinates $\beta_{i, j}$ give rise to such a T ? Given $\pi \in S_{n}$, let $\mathcal{U}_{\mathcal{T}}^{\pi} \subset \mathcal{T}_{\Lambda}$ be the set of matrices T admitting a spectral decomposition $T=Q_{\pi}^{T} \Lambda^{\pi} Q_{\pi}$, for some orthogonal, $L U$-positive matrix Q_{π}. As before, each $\mathcal{U}_{\mathcal{T}}^{\pi}$ is an open, dense subset of \mathcal{T}_{Λ} (and each contains all matrices in \mathcal{T}_{Λ} with nonzero off-diagonal entries) and their union covers \mathcal{T}_{Λ}. The only real difference is that since

$$
B_{\pi}=L_{\pi}^{-1} \Lambda^{\pi} L_{\pi}=U_{\pi} T U_{\pi}^{-1}
$$

from the first equality B_{π} is lower triangular and, from the second, it is upper Hessenberg (a real square matrix H is upper Hessenberg if $H_{i j}=0$ whenever $i>j+1): B_{\pi}$ must be lower bidiagonal! The following proposition is immediate.

Proposition 2 There is a diffeomorphism $\phi_{\pi}: \mathbb{R}^{n-1} \rightarrow \mathcal{U}_{\mathcal{T}}^{\pi}$ taking the entries $\beta_{i, i-1}^{\pi}, i=2, \ldots, n$, to $T \in \mathcal{U}_{\mathcal{T}}^{\pi}$.

Proposition 3 The sets \mathcal{O}_{Λ} and \mathcal{T}_{Λ} are compact, connected, orientable manifolds of dimension $N=\frac{n(n-1)}{2}$ and $n-1$, respectively.

Proof: Charts were provided for both spaces. Compactness follows from the fact that both spaces are closed in \mathcal{S}_{n} and lie in a sphere of radius $\|\Lambda\|=\sqrt{\operatorname{tr} \Lambda^{2}}$
centered at the origin. Connectivity of \mathcal{O}_{Λ} follows from the connectivity of $S O(n)$, proved in Appendix 8.3, since \mathcal{O}_{Λ} is the image of the continuous function

$$
\begin{aligned}
F: \quad S O(n) & \rightarrow \mathcal{O}_{\Lambda} \\
Q & \mapsto Q^{T} \Lambda Q
\end{aligned} .
$$

To compute the tangent space of \mathcal{O}_{Λ} at a matrix S, take curves of the form $S(t)=e^{-t A} S e^{t A}$ for skew-symmetric matrices A, which clearly stay in \mathcal{O}_{Λ} and satisfy $S(0)=S$. Differentiating, we learn that the matrices $[S, A]$ are tangent vectors. Once we show that such vectors are independent, this has to be the full tangent space, since the vector space of skew-symmetric matrices also has dimension N. Now, suppose $[S, A]=0$ for some skew-symmetric matrix A. This means that A commutes with S, which in turn has simple spectrum. From Lemma 4 below, A must be a function of S, and thus, symmetric. But the only matrix which is simultaneously symmetric and skew-symmetric is 0 . This also provides orientability, by identifying N independent vector fields along \mathcal{O}_{Λ} : just take a basis A_{i} of skew-symmetric matrices and consider the vector field $\left[S, A_{i}\right]$.

We now consider the connectivity of \mathcal{T}_{Λ}. Take $T \in \mathcal{T}_{\Lambda}$, hence, in some $\mathcal{U}_{\mathcal{T}}^{\pi}$. In triangular coordinates, join T to the diagonal matrix Λ^{π}. We only need to construct paths joining diagonal matrices $\Lambda^{\pi_{1}}$ and $\Lambda^{\pi_{2}}$. This is easy to accomplish if π_{2} differs from π_{1} by an inversion of consecutive diagonal entries i and $i+1$. The path in this case is simple: it consists of a conjugation of $\Lambda^{\pi_{1}}$ by a rotation in the $(i, i+1)$-plane, which clearly stays within \mathcal{T}_{Λ}. Arbitrary permutations π_{2} differ from π_{1} by a product of inversions and connectivity follows.

Finally, the proof that \mathcal{I}_{Λ} is orientable is given in Appendix 8.8.
In the proof above, and later in the text, we use the following fact from linear algebra.

Lemma 4 Let $A \in \mathcal{M}_{n}$ have simple spectrum. Then A and B commute if and only if B is a polynomial of $A, B=p(A)$.

Proof: Write $A=P D P^{-1}$ where D is a diagonal matrix with the eigenvalues of A. Then,

$$
[A, B]=0 \Leftrightarrow\left(P D P^{-1}\right) B=B\left(P D P^{-1}\right) \Leftrightarrow D\left(P^{-1} B P\right)=\left(P^{-1} B P\right) D
$$

But D is a diagonal matrix with simple spectrum, so

$$
\left[D, P^{-1} B P\right]=0 \Leftrightarrow P^{-1} B P=\tilde{D}
$$

with \tilde{D} also a diagonal matrix. Finally,

$$
P^{-1} B P=\tilde{D} \Leftrightarrow B=P \tilde{D} P^{-1}=p(A)
$$

for some polynomial p.
The manifold \mathcal{O}_{Λ} is special in many senses. Thus, for example, it is an adjoint orbit - a matter not considered in this text - and this allowed the computation of its homology by Faybusovich (4) following general ideas of Bott.

Proposition 5 If the spectrum of Λ is simple, $S O(n)$ is a covering space for \mathcal{O}_{Λ}.

Proof: The function

$$
\begin{aligned}
F: \quad S O(n) & \rightarrow \mathcal{O}_{\Lambda} \\
Q & \mapsto
\end{aligned}
$$

fails to be injective: $F(Q)=F(W)$ whenever $\left(W Q^{T}\right) \Lambda=\Lambda\left(W Q^{T}\right)$. This means that $W Q^{T}$ is a function of Λ (hence diagonal, from Lemma 4) and orthogonal, so $Q=W E$ for some sign diagonal matrix E with unit determinant.

Let us check that F is a covering map for \mathcal{O}_{Λ} with fibers consisting of 2^{n-1} elements. The continuity and surjectivity of F are obvious. From Appendix 8.3, $T_{Q} S O(n)=Q \mathcal{A}_{n}{ }^{1}$, and the derivative at $Q \in S O(n)$ along $Q A$ is given by

$$
D F(Q)(Q A)=-A Q^{T} \Lambda Q+Q^{T} \Lambda Q A=[F(Q), A] .
$$

It is easy to see then that $D F(Q)$ is an isomorphism between tangent spaces. From the inverse function theorem, F is a local diffeomorphism and we are done.

We have not yet computed the tangent spaces of \mathcal{I}_{Λ} : this will be easier once we have introduced the Toda flows. However, the tangent space $T_{D} \mathcal{I}_{\Lambda}$ at a diagonal matrix $D \in \mathcal{T}_{\Lambda}$ is easily seen to be the ($n-1$)-dimensional vector space of tridiagonal symmetric matrices with a null main diagonal.

[^0]
[^0]: ${ }^{1}$ For notation used throughout this text, see Appendix 8.

