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Introduction

Let Λ = diag(λ1, . . . , λn) be a real, n × n diagonal matrix of simple

spectrum, i.e., with n distinct eigenvalues, say λ1 < . . . < λn. In this work we

consider two manifolds: the space OΛ of real, symmetric matrices conjugate to

Λ and its subset TΛ consisting of the tridiagonal matrices in OΛ.

The fact that OΛ is a compact, orientable manifold naturally embedded

in Sn, the vector space of real, symmetric matrices of order n, is essentially

an application of the implicit function theorem1. The same properties hold

for TΛ, for more elaborate reasons. Our main purpose is to compute the

homologies H∗(TΛ; Z) and H∗(OΛ; Z/2Z). These computations suffice to obtain

some interesting geometric information about the natural embeddingOΛ →֒ Sn

— it is tight and taut — a result with unexpected consequences to matrix

spectral theory. This is not the case for TΛ, as will be shown, but we still

present some perfect Morse functions on it.

The basic ingredient is the height function

h(S) = trDS,

where D = diag(d1, . . . , dn) for distinct numbers dk. Height functions are Morse

on OΛ and TΛ and one may expect to compute homology by the standard

procedure from Morse theory (10).

In a nutshell, one computes sequentially the homology of subsets of

the form Mc = h−1(−∞, c]) for increasing regular values c. The topological

type of Mc changes at critical values of h in a controlled fashion. A simple

computation shows that the critical points of h are the diagonal matrices

Λπ = diag(λπ(1), . . . , λπ(n)), where π ∈ Sn is a permutation. In TΛ, Λπ is a

critical point of index i if and only if the permutation π has i descents, i.e.,

d(π) = i (for terminology and notation related to permutations, see Appendix

8.5). In OΛ, the index of the same critical point is the number of inversions

i(π).

The difficulty, as usual, lies in the understanding of the connecting

1Notation used throughout this text is listed in Appendix 8.1.
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homomorphisms ∂ : Hk+1(Mc+ǫ, Mc−ǫ; A) → Hk(Mc−ǫ; A) associated to the

attachment of a new cell at the transition of a critical value c = h(Λπ). It

turns out that all connecting homomorphisms are trivial, both for and TΛ and

OΛ, for the appropriate choice of coefficients. Thus, the homology essentially

counts the critical points of a given index.

To verify the triviality of these maps, one uses the Toda flow,

Ṡ = [S, ΠaS],

a very special differential equation which keeps both manifolds invariant. Here,

ΠaS is the real, skew symmetric matrix whose lower triangular part equals that

of S. The argument simplifies considerably because, on both manifolds, there

is a Riemannian structure for which the gradient of the height function is the

Toda vector field.

Indeed, a generic gradient of a height function h may be hard to track,

but the stable and unstable manifolds of the Toda flow may be computed

explicitly, and this is how they become handy in the study of the connecting

homomorphisms.

For TΛ, the generator of the relative homology Hk+1(Mc+ǫ, Mc−ǫ; A) at

a critical point Λπ is homotopic to a cycle γ contained in the stable manifold

Ws(Λ
π). This cycle, as will be shown, is trivialized by the closure of Ws(Λ

π),

which turns out to be an orientable manifold. The upshot is that H∗(TΛ; Z) is

freely generated by such closures.

The argument on OΛ has to be refined. In this case, the closure of

Ws(Λ
π) is not a manifold, but it still yields a trivialization for the generator

of Hk+1(Mc+ǫ, Mc−ǫ; A) when computations are performed in Z/2Z.

The universal covering space of TΛ was shown to be R
n−1 in (12). Soon

after, Fried (5) computed its cohomology ring using techniques related to those

employed in this text. The manifold OΛ is, in a sense, simpler, being an adjoint

orbit of an appropriate group action (for complex matrices), for which Lie

group techniques may be applied. Indeed, using ideas of Bott, Faybusovich

and Kocherlakota computed H∗(OΛ) in (4) and (6), respectively.

The height function h defined on each manifold is perfect : for diagonal

matrices D with simple spectrum, h is a Morse function whose number of

critical points of index k equals the k-th Betti number. From the Morse

inequalities, this is the minimal number of critical points for a Morse function

on a compact manifold.

A mild amplification of this fact has an interesting geometric interpreta-

tion. Consider the embedding ι : OΛ →֒ Sn. We will show that ι is tight and
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taut, in the sense that, for any hyperplane P ⊂ Sn (resp. point S ∈ Sn), the

height function hP : OΛ → R giving the signed distance of a point p ∈ OΛ to

P (resp. ℓS : OΛ → R, the square of the distance of p ∈ OΛ to S), if Morse, is

perfect. This is not the case for the analogous embedding of TΛ into the space

of real, tridiagonal, symmetric matrices: we show a counterexample for 3 × 3

matrices.

In general, tightness implies the two-piece property (TPP): an embedding

M ⊂ R
n satisfies the TPP if, for every hyperplane P ⊂ R

n, the complement

M rP contains at most two connected components. As shown in (2), an equiv-

alent formulation of the TPP for a compact smoothly immersed manifold M

is the following: every Morse height function admits a single local minimum

and maximum. Said differently, for such functions, a local extremum is neces-

sarily global. We finish the text with some natural applications of these ideas

to problems in numerical spectral theory.
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