4

Height functions

As usual, let Λ have simple spectrum. Let D be a real diagonal matrix of simple spectrum and consider $\mathcal{P}_{\mathcal{D}}$, the hyperplane in \mathcal{S}_{n} of matrices orthogonal to D. We are interested in the height function

$$
\begin{aligned}
h_{D}: \quad \mathcal{O}_{\Lambda} & \rightarrow
\end{aligned}
$$

which measures the signed distance of a given matrix $S \in \mathcal{O}_{\Lambda}$ to $\mathcal{P}_{\mathcal{D}}$. We also consider its restriction

$$
\begin{array}{rllc}
\tilde{h}_{D}: & \mathcal{T}_{\Lambda} & \rightarrow & \mathbb{R} \\
& T & \mapsto & \operatorname{tr}(D T)
\end{array}
$$

4.1
 The Toda vector field and ∇h_{D}

The following theorem allows us to combine, in the computation of the homology of \mathcal{T}_{Λ} and \mathcal{O}_{Λ}, the standard techniques of Morse theory applied on height functions to those in dynamical systems related to gradient vector fields, stable and unstable manifolds.

Theorem 12 Let D be a diagonal matrix with entries in strictly descending order. There exists a Riemannian metric on \mathcal{O}_{Λ} for which the gradient of the height function $h_{D}(S)=\operatorname{tr}(D S)$ is the Toda vector field $\left[S, \Pi_{a} S\right]$. The analogous statement holds for \mathcal{T}_{Λ} and \tilde{h}_{D}.

Proof: We consider \mathcal{O}_{Λ} : the other case follows since \mathcal{T}_{Λ} is a submanifold of \mathcal{O}_{Λ}. The Toda flow is invariant on both manifolds.

Recall that the tangent space of \mathcal{O}_{Λ} at S consists of the symmetric matrices of the form $\{[S, A]\}$ for A skew-symmetric. Also, the map $i: A \in$ $\mathcal{A}_{n} \mapsto[S, A] \in T_{S} \mathcal{O}_{\Lambda}$ is a linear isomorphism, since a matrix in the kernel is both skew-symmetric and symmetric. Thus, we may prescribe a Riemannian structure on \mathcal{O}_{Λ} by pushing forward by i an inner product on \mathcal{A}_{n}.

We need to prescribe an inner product $\langle\langle\cdot, .\rangle\rangle_{T_{S} \mathcal{O}_{\Lambda}}$ at each point $S \in \mathcal{O}_{\Lambda}$ so that the derivative of the height function h_{D} along a tangent vector $[S, A]$

$$
D h_{D}(S)[S, A]=\operatorname{tr} D[S, A]=\operatorname{tr}[D, S] A=\langle-[D, S], A\rangle
$$

equals

$$
\left\langle\left\langle\left[S, \Pi_{a} S\right],[S, A]\right\rangle\right\rangle_{T_{S} \mathcal{O}_{\Lambda}}=\left\langle\left\langle\Pi_{a} S, A\right\rangle\right\rangle_{\mathcal{A}_{n}} .
$$

The inner products in \mathcal{A}_{n} are of the form

$$
\left\langle\left\langle A_{1}, A_{2}\right\rangle\right\rangle_{\mathcal{A}_{n}}=\left\langle\mathcal{P} A_{1}, A_{2}\right\rangle
$$

for an appropriate positive definite operator \mathcal{P} from \mathcal{A}_{n} to itself. Thus

$$
\left\langle\left\langle\Pi_{a} S, A\right\rangle\right\rangle_{\mathcal{A}_{n}}=\left\langle\mathcal{P} \Pi_{a} S, A\right\rangle
$$

must equal

$$
\langle-[D, S], A\rangle
$$

for all A in \mathcal{A}_{n}, and we only need to find \mathcal{P} such that $\mathcal{P} \Pi_{a} S=-[D, S]$. Now notice that for all pairs i, j such that $i>j$, the entries of $-[D, S]\left(\right.$ resp. $\left.\Pi_{a} S\right)$ are $\left(d_{j}-d_{i}\right) S_{i, j}$ (resp. $S_{i, j}$). Let \mathcal{P} be the linear map from \mathcal{A}_{n} to itself satisfying

$$
\mathcal{P} E_{i, j}=\left(d_{j}-d_{i}\right) E_{i, j},
$$

where $E_{i, j}$ is the matrix whose only nonzero entries are a one in position (i, j) and a minus one in position (j, i). The equation $\mathcal{P} \Pi_{a} S=-[D, S]$ is satisfied and \mathcal{P} is clearly symmetric and positive definite. Thus the Riemannian structure

$$
\left\langle\left\langle\left[S, A_{1}\right],\left[S, A_{2}\right]\right\rangle\right\rangle_{T_{S} \mathcal{O}_{\Lambda}}=\left\langle\mathcal{P} A_{1}, A_{2}\right\rangle
$$

realizes the required equality.

Corollary 13 The height functions h_{D} and \tilde{h}_{D} are Morse, with critical points given by the diagonal matrices Λ^{π}. In \mathcal{O}_{Λ}, the index of Λ^{π} is $i(\pi)$. In \mathcal{T}_{Λ}, the index is $d(\pi)$.

Proof: The critical points of h_{D} are the matrices Λ^{π}, from 12. The nondegeneracy and the expression for the index follow from 10.

