4 Height functions

As usual, let Λ have simple spectrum. Let D be a real diagonal matrix of simple spectrum and consider $\mathcal{P}_{\mathcal{D}}$, the hyperplane in \mathcal{S}_n of matrices orthogonal to D. We are interested in the *height function*

$$h_D: \quad \mathcal{O}_\Lambda \quad \to \qquad \mathbb{R}$$
$$S \quad \mapsto \quad \operatorname{tr}(DS) = \langle D, S \rangle$$

which measures the signed distance of a given matrix $S \in \mathcal{O}_{\Lambda}$ to $\mathcal{P}_{\mathcal{D}}$. We also consider its restriction

4.1 The Toda vector field and ∇h_D

The following theorem allows us to combine, in the computation of the homology of \mathcal{T}_{Λ} and \mathcal{O}_{Λ} , the standard techniques of Morse theory applied on height functions to those in dynamical systems related to gradient vector fields, stable and unstable manifolds.

Theorem 12 Let D be a diagonal matrix with entries in strictly descending order. There exists a Riemannian metric on \mathcal{O}_{Λ} for which the gradient of the height function $h_D(S) = \operatorname{tr}(DS)$ is the Toda vector field $[S, \Pi_a S]$. The analogous statement holds for \mathcal{T}_{Λ} and \tilde{h}_D .

Proof: We consider \mathcal{O}_{Λ} : the other case follows since \mathcal{T}_{Λ} is a submanifold of \mathcal{O}_{Λ} . The Toda flow is invariant on both manifolds.

Recall that the tangent space of \mathcal{O}_{Λ} at S consists of the symmetric matrices of the form $\{[S, A]\}$ for A skew-symmetric. Also, the map $i : A \in$ $\mathcal{A}_n \mapsto [S, A] \in T_S \mathcal{O}_{\Lambda}$ is a linear isomorphism, since a matrix in the kernel is both skew-symmetric and symmetric. Thus, we may prescribe a Riemannian structure on \mathcal{O}_{Λ} by pushing forward by i an inner product on \mathcal{A}_n . We need to prescribe an inner product $\langle \langle ., . \rangle \rangle_{T_S \mathcal{O}_\Lambda}$ at each point $S \in \mathcal{O}_\Lambda$ so that the derivative of the height function h_D along a tangent vector [S, A]

$$Dh_D(S)[S,A] = \operatorname{tr} D[S,A] = \operatorname{tr} [D,S]A = \langle -[D,S],A \rangle$$

equals

$$\langle \langle [S, \Pi_a S], [S, A] \rangle \rangle_{T_S \mathcal{O}_\Lambda} = \langle \langle \Pi_a S, A \rangle \rangle_{\mathcal{A}_n}$$

The inner products in \mathcal{A}_n are of the form

$$\langle \langle A_1, A_2 \rangle \rangle_{\mathcal{A}_n} = \langle \mathcal{P}A_1, A_2 \rangle$$

for an appropriate positive definite operator \mathcal{P} from \mathcal{A}_n to itself. Thus

$$\langle \langle \Pi_a S, A \rangle \rangle_{\mathcal{A}_n} = \langle \mathcal{P} \Pi_a S, A \rangle$$

must equal

 $\langle -[D,S],A\rangle$

for all A in \mathcal{A}_n , and we only need to find \mathcal{P} such that $\mathcal{P}\Pi_a S = -[D, S]$. Now notice that for all pairs i, j such that i > j, the entries of -[D, S] (resp. $\Pi_a S$) are $(d_j - d_i)S_{i,j}$ (resp. $S_{i,j}$). Let \mathcal{P} be the linear map from \mathcal{A}_n to itself satisfying

$$\mathcal{P}E_{i,j} = (d_j - d_i)E_{i,j},$$

where $E_{i,j}$ is the matrix whose only nonzero entries are a one in position (i, j) and a minus one in position (j, i). The equation $\mathcal{P}\Pi_a S = -[D, S]$ is satisfied and \mathcal{P} is clearly symmetric and positive definite. Thus the Riemannian structure

$$\langle \langle [S, A_1], [S, A_2] \rangle \rangle_{T_S \mathcal{O}_\Lambda} = \langle \mathcal{P} A_1, A_2 \rangle$$

realizes the required equality.

Corollary 13 The height functions h_D and \tilde{h}_D are Morse, with critical points given by the diagonal matrices Λ^{π} . In \mathcal{O}_{Λ} , the index of Λ^{π} is $i(\pi)$. In \mathcal{T}_{Λ} , the index is $d(\pi)$.

Proof: The critical points of h_D are the matrices Λ^{π} , from 12. The nondegeneracy and the expression for the index follow from 10.