Título: | FRAÇÕES CONTÍNUAS: PROPRIEDADES ERGÓDICAS E DE APROXIMAÇÃO | |||||||
Autor: |
DANIELLE DE REZENDE JORGE |
|||||||
Colaborador(es): |
LORENZO JUSTINIANO DIAZ CASADO - Orientador |
|||||||
Catalogação: | 26/JUL/2006 | Língua(s): | PORTUGUÊS - BRASIL |
|||||
Tipo: | TEXTO | Subtipo: | TESE | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=8731&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=8731&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.8731 | |||||||
Resumo: | ||||||||
Neste trabalho apresentaremos a teoria de frações
contínuas enfatizando a interação entre a teoria de
números (expansões de números, aproximações diofantinas e
boas aproximações) e a teoria ergódica. Estudaremos a
transformação de Gauss e construiremos uma medida ergódica
desta transformação. Usando o Teorema Ergódico de Birkhoff
obteremos resultados sobre a expansão em frações contínuas
de quase todo número real em [0,1). Obteremos propriedades
sobre a aproximação de números reais por racionais, sobre
a frequência com que aparecem determinados números na
expansão em frações contínuas, etc. Estudaremos também o
shift de Bernolli e sua relação com a transformação de
Gauss. Finalmente, calcularemos a entropia desta
transformação.
|
||||||||