Título: | A DYNAMIC INTERACTION MODEL OF TRACK RAILWAY STRUCTURAL ELEMENTS | |||||||
Autor: |
ADENILSON COSTA DE OLIVEIRA |
|||||||
Colaborador(es): |
NEY AUGUSTO DUMONT - Orientador |
|||||||
Catalogação: | 26/JAN/2007 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=9498&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=9498&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.9498 | |||||||
Resumo: | ||||||||
In a railway, the vehicle interacts dynamically with a
track superstructure
(rails, rail pad and sleepers) and sub-structure (ballast,
sub-ballast, sub-
grade). Passengers' comfort, environmental loading (ground
vibration) and
frequency of maintenance works of vehicles as well as of
the track are deter-
mined by the way all the structural elements interact. The
response of each
single structural component is sensitive to the wheel-axle
pressure on the
track, the effects of joint in un welded rails, the
unevenness of wheel and
rail, and the train speed as referred to the track
critical velocity (minimum
phase velocity of bending waves propagating in the track
rails, supported
by the ballast). An important issue is for example how the
ballast will be
affected when old, soft, timber sleepers and replaced by
much, stiffer, pres-
tressed concrete elements, and how newly introduced
irregularities propa-
gate along the track, among uncountable mathematical model
possibilities,
the presents a rail-pad-sleeper-ballast model mainly based
on an assemble
of Timoshenko beam elements (for the rail) including, in
case of the sle-
epers, elastic foundation (for the ballast) and viscous
damping. The local
interaction of the rail-pad-sleeper set is simulated with
a bar element that
includes damping. The dissertation reports on the
numerical model, which
relies on exact, dynamic beam and truss elements derived
on a variational
basis for the frequency-domain analysis. The model enable
the assessment
of the vibration characteristics of a rail track, the
inverse evaluation of se-
veral mechanical properties of the structural components
and eventually, if
everything goes well, the assessment of a dynamic behavior
of the rail track
actual service load. Theoretical basis for transient
analysis is the advanced
mode superposition technique. Finally, are proposed three
global models for
the railway, obtained considering some modifications in
the sleeper.
|
||||||||