5 Modelos para representação da ferrovia

O modelo adotado para análise da interação dinâmica entre trilhopalmilha-dormente-lastro é mostrado na figura (5.1). O trilho é representado por um elemento de viga de Timoshenko sem amortecimento e sem base elástica, considerando-se sua inércia à rotação e deformação por esforço cortante. O dormente é modelado utilizando o mesmo elemento de viga considerando-se o amortecimento e a base elástica. A palmilha é modelada como um elemento de treliça com amortecimento e rigidez e o lastro como uma base elástica.

Figura 5.1: Modelo global para os componentes estruturais da ferrovia.

Figura 5.2: Vista frontal do modelo global para os componentes estruturais da ferrovia.

5.1 Considerações iniciais

A matriz de rigidez apresentada na equação (4-46) serve para cada elemento de trilho e cada dormente. Para o dormente, no entanto, é conveniente modificar a matriz, para que se tenha um menor número de graus de liberdade no modelo final. As seguintes modificações são feitas.

5.1.1

Consideração de uma metade de dormente como um único segmento de viga, com dois graus de liberdade localizados no ponto de apoio do trilho

Sejam dois elementos de viga de Timoshenko, de comprimentos L e b e matrizes de rigidez $\mathbf{K} \in \mathbf{K}_b$, respectivamente, utilizados para a modelagem de meio dormente.

Figura 5.3: Sistema 1 de coordenadas para o dormente.

A condensação dos graus de liberdade 5 e 6, internos em 3 e 4, externos é dada pela seguinte expressão:

$$\mathbf{K}_{\text{cond}} = \mathbf{K}_{\text{ee}} - \mathbf{K}_{\text{ei}} \, \mathbf{K}_{\text{ii}}^{-1} \, \mathbf{K}_{\text{ie}}$$
(5-1)

onde \mathbf{K}_{ee} , \mathbf{K}_{ei} , \mathbf{K}_{ii} e \mathbf{K}_{ie} são submatrizes de \mathbf{K}_b :

$$\mathbf{K}_{b} = \begin{bmatrix} \mathbf{k}_{11} & \mathbf{k}_{12} & \mathbf{k}_{13} & \mathbf{k}_{14} \\ \mathbf{k}_{21} & \mathbf{k}_{22} & \mathbf{k}_{23} & \mathbf{k}_{24} \\ \hline \mathbf{k}_{31} & \mathbf{k}_{32} & \mathbf{k}_{33} & \mathbf{k}_{34} \\ \mathbf{k}_{41} & \mathbf{k}_{42} & \mathbf{k}_{43} & \mathbf{k}_{44} \end{bmatrix} = \begin{bmatrix} \mathbf{K}_{ee} & \mathbf{K}_{ei} \\ \hline \mathbf{K}_{ie} & \mathbf{K}_{ii} \end{bmatrix}$$
(5-2)

Após a condensação, obtém-se uma nova matriz de rigidez \mathbf{K}_2 do dormente, equação (5-3), correspondente ao sistema da figura (5.4), sendo que nos graus de liberdade 3* e 4* foram adicionadas as parcelas devidas à condensação dos graus 5 e 6.

$$\mathbf{K}_{2} = \begin{bmatrix} \mathbf{K}_{11} & \mathbf{K}_{12} & \mathbf{K}_{13} & \mathbf{K}_{14} \\ \mathbf{K}_{21} & \mathbf{K}_{22} & \mathbf{K}_{23} & \mathbf{K}_{24} \\ \mathbf{K}_{31} & \mathbf{K}_{32} & \mathbf{K}_{33} & \mathbf{K}_{34} \\ \mathbf{K}_{41} & \mathbf{K}_{42} & \mathbf{K}_{43} & \mathbf{K}_{44} \end{bmatrix}$$
(5-3)

Figura 5.4: Sistema 2 de coordenadas para o dormente.

5.2 Modelo com 5 graus de liberdade por dormente para a ferrovia (modelo 5)

O modelo resultante das modificações anteriores é mostrado na figura (5.5). Nesse o modelo o dormente é representado pelos graus 3, 4 e 5; 8, 9 e 10 e assim sucessivamente.

Figura 5.5: Modelo 5 para representação da ferrovia.

No entanto, vamos introduzir outras modificações de modo a reduzir ainda mais o número de graus de liberdade.

5.2.1 Eliminação do grau de liberdade 2 para a representação do engaste

A matriz de rigidez do sistema 3 da primeira das figuras (5.6) se expressa, a partir dos coeficientes de \mathbf{K}_2 do sistema 2:

$$\mathbf{K}_{3} = \begin{bmatrix} \mathbf{K}_{11} & \mathbf{K}_{13} & \mathbf{K}_{14} \\ \mathbf{K}_{31} & \mathbf{K}_{33} & \mathbf{K}_{34} \\ \mathbf{K}_{41} & \mathbf{K}_{43} & \mathbf{K}_{44} \end{bmatrix}$$
(5-4)

5.2.2 Condensação dos graus de liberdade 1 e 4, em função do grau 3

Renumeram-se inicialmente os graus de liberdade da matriz \mathbf{K}_3 da equação (5-4), na forma

$$\mathbf{K}_{3}^{*} = \begin{bmatrix} \mathbf{K}_{11} & \mathbf{K}_{14} & \mathbf{K}_{13} \\ \mathbf{K}_{41} & \mathbf{K}_{44} & \mathbf{K}_{43} \\ \hline \mathbf{K}_{31} & \mathbf{K}_{34} & \mathbf{K}_{33} \end{bmatrix}$$
(5-5)

Obtém-se finalmente a matriz condensada \mathbf{K}_4 correspondente ao sistema 4 da segunda das figuras (5.6):

$$\mathbf{K}_{4} = \mathbf{K}_{33} - \begin{bmatrix} \mathbf{K}_{31} & \mathbf{K}_{34} \end{bmatrix} \begin{bmatrix} \mathbf{K}_{11} & \mathbf{K}_{14} \\ \mathbf{K}_{41} & \mathbf{K}_{44} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{K}_{13} \\ \mathbf{K}_{43} \end{bmatrix}$$
(5-6)

5.3 Modelo com 3 graus de liberdade por dormente para a ferrovia (modelo 3)

O modelo final global resultante das transformações sugeridas nas seções (5.1.1)-(5.2.2) é mostrado na figura (5.7). Nesse modelo o dormente é representado pelos graus 3, 6, 9, 12 e assim sucessivamente.

Figura 5.7: Modelo 3 para representação da ferrovia.

As matrizes globais de rigidez, massa e amortecimento são obtidas de acordo com a numeração indicada na figura (5.7), e desenvolvidas utilizando a abordagem mostrada na seção (3.4).

5.4

Modelo com 2 graus de liberdade por dormente para a ferrovia (modelo 2)

Um modelo alternativo para modelagem da ferrovia, figura (5.8), é obtido pela condensação dinâmica dos graus de liberdade correspondente aos dormentes, figura (5.7), nos graus de liberdade verticais referentes ao trilho. Obtém-se assim, um modelo simplificado com dois graus de liberdade por dormente, onde os graus de liberdade com numeração ímpar são os novos graus condensados.

Figura 5.8: Modelo 2 para representação da ferrovia.

5.5 Modelo com 7 graus de liberdade por dormente para a ferrovia (modelo 7)

Para uma melhor avaliação dos resultados, considera-se um quarto modelo, figura (5.9), onde as modificações realizadas nas seções (5.1.1) a (5.2.2) são ignoradas, com exceção da consideração da simetria da via férrea. Nesse o modelo o dormente é representado pelos graus de liberdade 3, 4, 5, 6 e 7; 10, 11, 12, 13 e 14 e assim sucessivamente.

Figura 5.9: Modelo 7 para representação da ferrovia.

5.6 Propriedades dos elementos da via férrea

Na maioria dos casos, a obtenção de resultados condizentes com o problema físico real é dificultada pela ausência de informações referentes à real distribuição de amortecimento e rigidez, principalmente ao longo da subestrutura de uma via férrea.

Essas informações só podem ser obtidas pela realização de ensaios rigorosos, que requerem a utilização de equipamentos sofisticados e conseqüentemente geram altos custos. Neste trabalho, os parâmetros físicos dos componentes estruturais da via férrea listados nas tabelas (5.1) a (5.3) são obtidos tomando-se como referência dados experimentais apresentados por (Zhai-2003).

Para o trilho considera-se a seção UIC 60, padronizada e cujas dimensões são apresentadas na figura (5.10). Para o dormente, figura (5.11), adota-se o modelo NS90 de monobloco de concreto com pretensão.

Figura 5.10: Medidas geométricas da seção transversal do trilho UIC 60 em milímetros (CORUS).

Os valores numéricos dos parâmetros físicos e geométricos utilizados na implementação numérica foram obtidos levando-se em conta as definições dadas no capítulo 4.

Para o elemento de palmilha, temos

$$\zeta = \frac{\mu}{2\rho A} \tag{5-7}$$

onde μ é definido como força por unidade de comprimento dividida por velocidade. O parâmetro ζ tem unidade de freqüência . A massa específica ρ é definida por unidade de volume. O módulo de elasticidade E tem a mesma unidade de tensão.

Figura 5.11: Medidas geométricas do meio dormente e palmilha em metros.

O meio dormente tem sua massa total distribuída ao longo de seu comprimento assim como seu amortecimento, de acordo com as definições de $m \in \mu$ dadas anteriormente.

$$\zeta = \frac{\mu}{2m} \tag{5-8}$$

Em relação ao trilho, a massa m também é definida por unidade de comprimento. Para o trilho e dormentes, o módulo de elasticidade transversal é calculado utilizando a relação

$$G = \frac{E}{2(1+\nu)} \tag{5-9}$$

com ν igual a 0,25. Assim, $G \cong \frac{E}{2.5}$.

A rigidez w do lastro é definida da mesma forma que do módulo E e o coeficiente de amortecimento segue as definições anteriores de μ .

L(m)	$A(m^2)$	$I(m^4)$	κ	$E(N/m^2)$	m(kg/m)
0,545	$76, 86.10^{-4}$	$3,217.10^{-5}$	1	$2,059.10^{11}$	60,640

Tabela 5.1: Propriedades físicas e geométricas para o trilho UIC 60. Fonte dos dados: (Zhai-2003).

L(m)	$A(m^2)$	$I(m^4)$	κ	$E(N/m^2)$	m(kg/m)	$\zeta(1/s)$
1,26	$5,126.10^{-2}$	$2,310.10^{-4}$	5/6	$2, 1.10^{10}$	99,603	$2,343.10^2$

Tabela 5.2: Propriedades físicas e geométricas para o dormente. Fonte dos dados: (Zhai-2003).

L(m)	$A(m^2)$	$E(N/m^2)$	m(kg/m)	$\zeta(1/s)$
0,02	0,04	$3, 25.10^8$	3,920	$4,783.10^4$

Tabela 5.3: Propriedades físicas e geométricas para a palmilha. Fonte dos dados: (Zhai-2003).

O valor da rigidez do lastro é $w = 1, 1.10^8$ em kN/m^2 , (Zhai-2003).

Utilizando as propriedades das tabelas (5.1)-(5.3) são plotados na figura (5.12) o módulo dos seis primeiros autovalores obtidos em cada modelo, variando-se o número de matrizes n na expansão em série de freqüências.

Os modelos 3 e 5 apresentam melhores resultados, os módulos dos seus autovalores (freqüências) tendem a se aproximar a medida que aumentamos n.

Figura 5.12: Comparação dos autovalores obtidos em cada modelo para diferentes valores de n.

Da figura (5.12), nota-se que o modelo 2 apresenta autovalores não tão próximos aos obtidos nos outros modelos, principalmente para n=1. A explicação é que, devido ao grande número de condensações envolvidas na obtenção das matrizes de rigidez, massa e amortecimento do dormente, algumas informações são perdidas. Porém nota-se a convergência dos autovalores quando aumentamos o valor de n.

Para melhor visualização dos resultados, nas tabelas (5.4) a (5.7) são listados os valores dos dez primeiros autovalores obtidos em cada modelo, para cada valor de n.

n	= 1	n	= 2	n = 3		
Real	Imaginária	Real	Imaginária	Real	Imaginária	
1061,6918	252,0004	974,0830	204,3204	957,7665	189,3837	
1081,6048	255,8349	988,3609	206,2398	970,6360	190,4549	
1118,5326	272,4925	1012,7770	213,8824	992,4275	$195{,}5518$	
1174,0517	282,9143	$1053,\!0683$	214,7916	$1028,\!5676$	$193,\!8387$	
1321,9085	276,0447	$1162,\!3991$	201,9211	1124,8752	177,7392	
1624,0620	269,6184	$1368,\!3500$	184,8619	1297,8612	$155,\!2702$	
2070,4524	267,9407	$1640,\!6254$	168,2424	1511,0000	133,5230	
2617,1061	270,7127	1931,7526	154,9230	$1721,\!5391$	117,0423	
3189,3632	278,4279	2194,5724	145,9861	1898,2729	106,4810	
3660,1983	289,3882	2381,7663	141,1532	2017,2412	100,8018	

Tabela 5.4: Autovalores obtidos no modelo 2 para $n=1, 2 \in 3$.

n	= 1	n	= 2	n = 3		
Real	Imaginária	Real	Imaginária	Real	Imaginária	
998,7066	227,9218	967,2634	194,5363	963,4900	187,2182	
1014,0868	230,2758	980,3658	$195{,}5029$	976,1439	187,7096	
1040,6584	239,8594	1002,7203	200,6026	997,7488	191,6020	
1082,8149	242,0456	1038,9804	198,5218	1032,5819	188,1523	
1194,6068	227,9931	1133,6146	180,3583	1122,1434	$167,\!6875$	
1397,0736	207,0622	1296,8017	152,7692	1272,3994	136,4304	
1637,1339	182,4718	$1477,\!5698$	123,2936	1431,9819	104,4399	
1847,5393	159,3975	1625,3030	99,7874	1556,8429	80,7164	
1993,7337	142,6514	1722,8087	84,9406	1636,6376	66,6649	
2074,8553	133,2496	$1775,\!3988$	77,2899	1678,8829	59,7098	

Tabela 5.5: Autovalores obtidos no modelo 3 para $n{=}1,\,2$ e 3.

n	= 1	n	= 2	n = 3		
Real	Imaginária	Real	Imaginária	Real	Imaginária	
980,8802	204,9658	964,7840	188,0464	963,6633	185,0840	
994,8070	206,1232	977,5575	188,5180	$976,\!2969$	$185,\!3297$	
1018,8147	212,0949	999,4194	192,4128	997,9537	$188,\!6835$	
1057,1104	210,4234	$1034,\!5888$	188,7892	$1032,\!6765$	$184,\!3447$	
$1156,\!3350$	190,7116	1124,8148	$167,\!1368$	$1121,\!2295$	160,8518	
$1328,\!1575$	157,0330	1277,2786	131,3029	1267,6215	$5,\!8073$	
1395,2413	6,0318	1292,7876	4,2539	$1269,\!5926$	$3,\!3506$	
$1396,\!2564$	3,2952	1293,7029	2,8500	1270,4896	2,8247	
1396,9471	2,7619	1294,1525	2,5646	1270,8563	2,6689	
1397,2279	2,6151	1294,3351	2,4824	1273,2074	1,1989	

Tabela 5.6: Autovalores obtidos no modelo 5 para $n=1, 2 \in 3$.

n	= 1	n	= 2	n = 3		
Real	Imaginária	Real	Imaginária	Real	Imaginária	
969,5208	190,0283	963,8149	184,6012	963,7304	184,4265	
982,5473	190,3885	976,4548	184,7817	976,2969	184,5952	
1004,9687	194,1468	998,1493	187,9959	998,0348	187,7803	
1132,2370	189,9851	1032,8798	183,4082	1032,7271	183,1593	
1040,7811	165,5736	1121,2711	158,9886	1120,9761	$158,\!6897$	
1272,6474	6,7176	1258,4841	6,2954	1257,9428	6,2700	
1275,3149	3,6815	1260,8841	3,5304	1260,3258	3,5215	
1276,5100	3,0034	$1261,\!9557$	2,9228	1261,3898	2,9181	
1277,0023	2,7986	1262,3954	2,7405	1261,8264	2,7371	
1278,7467	19,4787	1264,5074	17,5174	1262,3954	2,7405	

Tabela 5.7: Autovalores obtidos no modelo 7 para $n=1, 2 \in 3$.

Observando os valores, nota-se que os autovalores diminuem à medida que aumenta-se o número de matrizes. Comparando-se com modelo não condensando (model 7), melhores resultados foram obtidos para n = 3, principalmente nos modelos 3 e 5.

Com a intenção de verificar a convergência dos autovalores obtidos no modelo 2, 3 e 5, utiliza-se um sistema com amortecimento pequeno, onde os elementos (trilho, palmilha e dormente) passam a ter as seguintes propriedades listadas a seguir:

$A(m^2)$	$I(m^4)$	L(m)	κ	$E (N/m^2)$	m~(kg)
$76, 56.10^{-4}$	$3,217.10^{-5}$	0,545	1	$2,059.10^{8}$	125,5

Tabela 5.8: Propriedades físicas e geométricas para o trilho.

A (m^2)	$I(m^4)$	L (m)	κ	$E (N/m^2)$	$m \ (kg/m)$	$\zeta(1/s)$	$w (N/m^2)$
0,09	0,0027	1,40	$\frac{5}{6}$	$2, 1.10^7$	60,25	0,49	$1, 1.10^5$

Tabela 5.9: Propriedades físicas e geométricas para o dormente.

	$A(m^2)$	L (m)	$E (N/m^2)$	$ ho ~(kg/m^3)$	$\zeta(1/s)$
ſ	0,09	0,02	$6, 5.10^4$	0,98	0,30

Tabela 5.10: Propriedades físicas e geométricas para a palmilha.

Na figura (5.13), pode-se verificar a convergência dos resultados. Os autovalores são menores comparados aos resultados anteriores pela redução nos valores das propriedades dos elementos.

Observando os resultados da tabela (5.11) e comparando-se os primeiros autovalores, percebe-se que há convergência dos resultados à medida que se aumenta o número de matrizes.

Figura 5.13: Comparação dos autovalores obtidos em cada modelo para diferentes valores de n para um sistema com pouco amortecimento.

modelo 2			modelo 3			modelo 5		
n = 1	n=2	n = 3	n = 1	n = 2	n = 3	n = 1	n = 2	n = 3
38,8943	36,3414	$35,\!5705$	36,2288	35,2709	$35,\!1394$	35,7197	$35,\!1657$	$35,\!1176$
39,6745	36,9785	$36,\!1462$	36,8246	35,8066	$35,\!6629$	$36,\!2785$	35,6910	35,6382
42,2711	38,9468	37,8636	38,6140	37,3604	$37,\!1689$	37,9177	37,2036	37,1326
46,5247	41,8260	40,2416	41,0676	39,3944	$39,\!1156$	40,0875	39,1605	39,0557
52,5251	45,8272	43,5113	44,2515	42,0410	$41,\!6362$	42,8845	41,6903	$41,\!5346$
62,3639	52,6118	48,9948	49,0774	46,0084	$45,\!3725$	47,0365	$45,\!4284$	$45,\!1703$

Tabela 5.11: Módulo dos seis primeiros autovalores obtidos nos modelos com a redução do amortecimento e rigidez.

O modelo 3 apresenta autovalores mais próximos ao modelo 5 do que o modelo 2.

Esse estudo é importante, pois verifica-se que há a convergência dos resultados obtidos nos modelos de interação dinâmica.