Título: | DEVELOPMENT OF HYBRID FINITE ELEMENTS FOR ANALYSIS OF DYNAMICS PROBLEMS USING ADVANCED MODE SUPERPOSITION | |||||||
Autor: |
PLINIO GLAUBER CARVALHO DOS PRAZERES |
|||||||
Colaborador(es): |
NEY AUGUSTO DUMONT - Orientador |
|||||||
Catalogação: | 02/JAN/2006 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7633&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7633&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.7633 | |||||||
Resumo: | ||||||||
The hybrid finite element method, proposed by Pian on the
basis of the
Hellinger-Reissner potential, has proved itself a
conceptual breakthrough among
the discretization formulations, and has been extensively
explored both
academically and in commercial codes also taking into
account an independent
series of more recent developments called Trefftz methods.
The hybrid boundary
element method is a successful generalization of Pian´s
original formulation, in
which Green´s functions are taken as interpolation
functions in the domain, thus
enabling the robust and accurate modeling of arbitrarily
shaped bodies submitted
to several types of actions. More recently, a proposition
by Przemieniecki - for
the generalized free vibration analysis of truss and beam
elements - was
incorporated into the hybrid boundary element formulation
and extended to the
analysis of time-dependent problems by making use of an
advanced mode
superposition procedure that takes into account general
initial conditions as well
as general body actions, besides the inertial effect. The
present contribution aims
to bring to finite elements the conceptual improvements
obtained in the frame of
the hybrid boundary element method. A large family of
hybrid, macro finite
elements is introduced for the unified treatment of 2D and
3D, static and transient
problems of elasticity and potential on the basis of
nonsingular fundamental
solutions. It is also shown that nonhomogeneous materials,
as the novel
functionally graded materials, may be dealt with
consistently, at least for potential
problems. Some simple numerical examples are shown to
illustrate the
theoretical developments.
|
||||||||