Pontifícia Universidade Católica do Rio de Janeiro

Plínio Glauber Carvalho dos Prazeres

Desenvolvimento de elementos finitos híbridos para a análise de problemas dinâmicos usando superposição modal avançada

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de Concentração: Estruturas.

Orientador: Ney Augusto Dumont

Rio de Janeiro Agosto de 2005.

Pontifícia Universidade Católica do Rio de Janeiro

Plínio Glauber Carvalho dos Prazeres

Desenvolvimento de elementos finitos híbridos para a análise de problemas dinâmicos usando superposição modal avançada

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Ney Augusto Dumont
Presidente/Orientador
Departamento de Engenharia Civil - PUC-Rio

Prof. Remo Magalhães de Souza Departamento de Engenharia Civil - UFPA

Prof. Raul Rosas e SilvaDepartamento de Engenharia Civil - PUC-Rio

Profa. Deane de Mesquita Roehl Departamento de Engenharia Civil - PUC-Rio

> Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 04 de Agosto de 2005.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Plínio Glauber Carvalho dos Prazeres

Graduou-se em Engenharia Civil, pela Universidade Federal do Pará, em novembro de 2002. Durante a graduação atuou na área de estruturas no desenvolvimento de um programa para análise de seções de concreto armado.

Ficha Catalográfica

Prazeres, Plínio Glauber Carvalho dos

Desenvolvimento de Elementos Finitos Híbridos Para a Análise de Problemas Dinâmicos Usando Superposição Modal Avançada / Plínio Glauber Carvalho dos Prazeres; orientador: Ney Augusto Dumont - Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2005.

170f.:il.; 29,7cm

Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Incluí referências bibliográficas.

1. Engenharia Civil – Teses. 2. Elementos Finitos Híbridos. 3. Análise Dinâmica. 4. Superposição Modal Generalizada. I. Dumont, Ney Augusto II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Aos meus pais, Raimundo e Enilda, por acreditarem em meus sonhos e por sonharem junto comigo.

Agradecimentos

A Deus.

Aos meus pais pelo apoio irrestrito, confiança incondicional e amor pleno.

À Márcia, minha amada namorada que sempre me apoiou e tanto me incentivou.

Ao prof. Ney Augusto Dumont pela dedicação e conhecimento transmitido ao longo de toda pesquisa que possibilitaram a conclusão deste trabalho.

Ao prof. Remo Magalhães de Souza pela amizade, apoio e incentivo que me levaram à seguir a vida acadêmica.

Aos meus irmãos, Letícia, Ângelo e Jamile, que contribuíram e fazem parte de minha formação e caráter, pelos quais tenho um grande carinho.

Ao CNPq, à PUC-Rio e à FUNPEA-ELETRONORTE/UFPa pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Prazeres, Plínio Glauber Carvalho dos.; Dumont, Ney Augusto. Desenvolvimento de elementos finitos híbridos para a análise de problemas dinâmicos usando superposição modal avançada. Rio de Janeiro, 2005. 170p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O método híbrido de elementos finitos, proposto por Pian com base no potencial de Hellinger-Reissner, provou ser um avanço conceitual entre as formulações de discretização, tendo sido explorado extensivamente desde então por códigos acadêmicos e comerciais, também levando em conta uma série independente dos mais recentes desenvolvimentos chamados métodos de Trefftz. O método híbrido de elementos de contorno é uma generalização bem sucedida da formulação original de Pian, em que funções de Green são usadas como funções de interpolação no domínio, possibilitando assim a modelagem robusta e precisa de formas arbitrárias submetidas a vários tipos de ações. Mais recentemente, uma proposição de Przemieniecki – para a análise geral de vibração livre de elementos de treliça e viga - foi incorporada à formulação de elementos híbridos de contorno e estendida para a análise de problemas dependentes do tempo fazendo uso de um processo de superposição modal avançada que leva em conta condições iniciais gerais assim como ações de corpo gerais, além de efeitos inerciais. A presente contribuição pretende trazer para elementos finitos os melhoramentos conceituais obtidos no contexto do método híbrido de elementos de contorno. Uma grande família de macro elementos finitos híbridos é introduzida para o tratamento unificado em 2D e 3D, de problemas estáticos e transientes de elasticidade e potencial com base nas soluções fundamentais não-singulares. É também mostrado que materiais nãohomogêneos, como os novos materiais com gradação funcional, podem ser tratados consistentemente, pelo menos para problemas de potencial. Alguns exemplos numéricos simples são apresentados como ilustração dos desenvolvimentos teóricos.

Palavras-chave

Elementos finitos híbridos; elementos finitos dinâmicos; análise dinâmica; superposição modal generalizada; materiais com gradação funcional.

Abstract

Prazeres, Plínio Glauber Carvalho dos.; Dumont, Ney Augusto. **Development of hybrid finite elements for analysis of dynamics problems using advanced mode superposition.** Rio de Janeiro, 2005. 170p. Msc. Dissertation - Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

The hybrid finite element method, proposed by Pian on the basis of the Hellinger-Reissner potential, has proved itself a conceptual breakthrough among the discretization formulations, and has been extensively explored both academically and in commercial codes also taking into account an independent series of more recent developments called Trefftz methods. The hybrid boundary element method is a successful generalization of Pian's original formulation, in which Green's functions are taken as interpolation functions in the domain, thus enabling the robust and accurate modeling of arbitrarily shaped bodies submitted to several types of actions. More recently, a proposition by Przemieniecki – for the generalized free vibration analysis of truss and beam elements - was incorporated into the hybrid boundary element formulation and extended to the analysis of time-dependent problems by making use of an advanced mode superposition procedure that takes into account general initial conditions as well as general body actions, besides the inertial effect. The present contribution aims to bring to finite elements the conceptual improvements obtained in the frame of the hybrid boundary element method. A large family of hybrid, macro finite elements is introduced for the unified treatment of 2D and 3D, static and transient problems of elasticity and potential on the basis of nonsingular fundamental solutions. It is also shown that nonhomogeneous materials, as the novel functionally graded materials, may be dealt with consistently, at least for potential problems. Some simple numerical examples are shown to illustrate the theoretical developments.

Keywords

Hybrid finite element; dynamic finite element; dynamic analysis; generalized mode superposition; functionally graded materials.

Sumário

LISTA DE FIGURAS	12
LISTA DE TABELAS	17
1 INTRODUÇÃO	18
1.1. COLOCAÇÃO DO PROBLEMA	18
1.2. Revisão Bibliográfica	20
1.3. Objetivos	22
1.4. Organização do Texto	23
2 O MÉTODO HÍBRIDO DOS ELEMENTOS FINITOS	25
2.1. CONCEITOS DE TEORIA DO POTENCIAL	25
2.1.1. Problema de Potencial quase-harmônico	26
2.1.2. Problema de Potencial Harmônico	29
2.2. CONCEITOS DE TEORIA DA ELASTICIDADE	30
2.3. Soluções Fundamentais	33
2.4. O Princípio de Hamilton	35
2.5. O POTENCIAL DE HELLINGER-REISSNER GENERALIZADO	37
2.6. FORMULAÇÃO DO MÉTODO HÍBRIDO DOS ELEMENTOS FINITOS	40
2.6.1. Particularização da Condição de Estacionariedade do Potencial de	е
Hellinger-Reissner para o Caso de Soluções Fundamentais Não-Singulares	40
2.6.2. Discretização da Condição de Estacionariedade do Potencial de	
Hellinger-Reissner para Soluções Não-Singulares	41
2.6.3. Propriedades Físicas Relacionadas às Matrizes H, F e K	44
2.7. Análise Geral de Problemas Dependentes do Tempo no Domínio	O DA
FREQÜÊNCIA	46
2.7.1. Mudança do Domínio do Tempo para o Domínio da Freqüência	46
2.7.2. Propriedades Espectrais das Matrizes H_0 e F_0	47
2.7.3. Desenvolvimento das Matrizes F e H em Séries de Freqüência	49
2.8. SOLUÇÃO PARA O PROBLEMA DE AUTOVALOR NÃO-LINEAR	51
2.9. USO DE UM PROCESSO DE SUPERPOSIÇÃO MODAL	54
2.9.1. Processo de Superposição Modal	54
2.9.2. Consideração de Velocidades e Deslocamentos Iniciais	56

2.9.3. Consideração de Deslocamentos Nodais Forçados	58
2.9.4. Avaliação dos Resultados em Pontos Internos	59
2.10. Obtenção da Matriz de Rigidez como uma Série de Freqüênc	ias 60
3 SOLUÇÕES FUNDAMENTAIS NÃO-SINGULARES	62
3.1. PROBLEMAS DE POTENCIAL	62
3.1.1. Problemas de Potencial Quase-harmônicos	63
3.1.2. Problemas de Potencial Harmônicos	66
3.2. PROBLEMAS DE ELASTICIDADE	68
3.2.1. Elastostática	68
3.2.2. Elastodinâmica	73
3.3. Espaços Nulos Relacionados à Parte Estática das Soluções	
FUNDAMENTAIS NÃO-SINGULARES	77
4 SOLUÇÕES FUNDAMENTAIS PARA CONDUÇÃO DE CALOR EM	1
MATERIAIS COM GRADAÇÃO FUNCIONAL	79
4.1. EQUAÇÃO DE GOVERNO	79
4.1.1. Problema Isotrópico	80
4.1.2. Problema Ortotrópico	80
4.2. SOLUÇÃO DA EQUAÇÃO DE GOVERNO PARA PROBLEMAS 2D E 3D	83
4.2.1. Problema Isotrópico	84
4.2.2. Problema Ortotrópico	88
4.3. RESUMO DAS EXPRESSÕES OBTIDAS NA SEÇÃO 4.2	92
5 ELEMENTOS UNIDIMENSIONAIS PARA ANÁLISE DE ESTRUTU	JRAS
APORTICADAS	93
5.1. FORMULAÇÃO DE UM ELEMENTO DE TRELIÇA	93
5.1.1. Formulação do Problema	94
5.1.2. Obtenção da matriz de rigidez	94
5.2. FORMULAÇÃO DE UM ELEMENTO DE VIGA – VIGA ESBELTA	98
5.2.1. Formulação do Problema	98
5.2.2. Obtenção da Matriz de Rigidez	98
5.3. FORMULAÇÃO DE UM ELEMENTO DE VIGA — VIGA DE TIMOSHENKO	105
5.3.1. Formulação do Problema	105
5.3.2. Obtenção da Matriz de Rigidez	107
5.4. MATRIZ DE RIGIDEZ GEOMÉTRICA EFETIVA PARA ELEMENTOS DE TREL	JÇA
2D	109
5.4.1. Formulação do Problema	100

5.4.2. Obtenção da Matriz de Rigidez Geométrica	110
6 EXEMPLOS NUMÉRICOS	112
6.1. Avaliação da Precisão para Problemas de Fluxo em Estado	
PERMANENTE	112
6.2. CONDUÇÃO DE CALOR TRANSIENTE BIDIMENSIONAL EM UMA PLACA	
QUADRADA HOMOGÊNEA	120
6.3. CONDUÇÃO DE CALOR TRANSIENTE BIDIMENSIONAL EM UMA PLACA	
Quadrada Não-homogênea	124
6.4. VIGA SOB CARREGAMENTO DE MOMENTO FLETOR LINEAR	126
6.5. VIGA SOB CARREGAMENTO DE MOMENTO FLETOR CONSTANTE	129
6.6. Análise Dinâmica de uma Barra Fixa e Livre sob Carga Dinâm	MICA
Axial por Elementos de Treliça Unidimensionais	131
6.7. Análise Dinâmica de um Pórtico Submetido a umPulso Triano	GULAR
POR ELEMENTOS DE VIGA PLANA DE BERNOULLI-EULER	135
6.8. Análise dinâmica de uma treliça plana com três graus de	
LIBERDADE	139
7 CONCLUSÃO	142
7.1. VANTAGENS DO MÉTODO	143
7.2. DESVANTAGENS DO MÉTODO	143
7.3. Análise dos Resultados	144
7.4. SUGESTÕES PARA TRABALHOS FUTUROS	145
REFERÊNCIAS BIBLIOGRÁFICAS	146
APÊNDICES	150
APÊNDICE A - OBTENÇÃO DA MATRIZ DE RIGIDEZ PARA PROBLEMAS DE	
ELASTOSTÁTICA NO MÉTODO HÍBRIDO DOS ELEMENTOS DE CONTORNO	150
APÊNDICE B - AVALIAÇÃO DE DESLOCAMENTOS NO DOMÍNIO EM PROBL	EMAS
DE ELASTOSTÁTICA	152
APÊNDICE C - CÁLCULO DA MATRIZ DE RIGIDES K NO CONTEXTO DO MI	ÉTODO
HÍBRIDO SIMPLIFICADO DE ELEMENTOS FINITOS	154
APÊNDICE D - MATRIZES DE TRANSFORMAÇÃO PARA ELEMENTOS DE TR	ELIÇA
E VIGA	157
D.1 - Matrizes de transformação para o elemento de treliça plana	157
D.2 - Matriz de transformação para o elemento de viga com 6 graus de	
lihardada	161

APENDICE E - FORMULAÇÃO ANALÍTICA DE CABOS FLEXÍVEIS	163
E.1 - Equação de governo	163
E.2 - Cabo Parabólico	165
E.3 - Cabo em Catenária	166
APÊNDICE F - CONDENSAÇÃO ESTÁTICA DOS GRAUS DE LIBERD	DADE 3 E 6 DO
ELEMENTO DE VIGA	169

Lista de figuras

rigura 1.1. Maina de elementos finitos - problema plano.
Figura 2.1: Corpo elástico em equilíbrio.
Figura 2.2: Gráfico da energia interna de deformação de um corpo elástico. 38
Figura 3.1: Elementos 2D – T6 e Q8.
Figura 3.2: Elementos 3D – Tetraedro de 10 nós e H20.
Figura 4.1: Sistema de coordenadas para descrição de um FGM con
propriedades \overline{k} e \overline{c} definidas em $Z=\overline{Z}$ (coordenada global), a qual e
equivalente a $z = \overline{z}$ (coordenada local).
Figura 4.2: Padrões de variação ilustrativos da função exponencial $k(z)$.
Figura 4.3: Padrões de variação ilustrativos da função quadrática $\mathit{k}(\mathit{z})$, para
alguns valores de α .
Figura 4.4: Padrões de variação ilustrativos da função trigonométrica $\mathit{k}(\mathit{z})$, para
alguns valores de α e β .
Figura 5.1: Elemento de treliça.
Figura 5.2: a) Sistema de coordenadas para a derivação da matriz de rigidez de
um elemento de treliça e sistema interno de coordenadas; b) definição do
domínio Ω , contornos Γ_{1} e Γ_{2} e correspondentes co-senos diretores η_{1} e η_{2}
do elemento de treliça.
Figura 5.3: a) sistema de coordenadas para a matriz de rigidez; b) convenção de
esforços para viga.
Figura 5.4: a) sistema de coordenadas locais e; b) sistema de coordenadas
globais de um elemento de viga com 6 graus de liberdade. 102
Figura 5.5: sistema de coordenadas locais de um elemento de treliça no plano
103
Figura 5.6: sistema de coordenadas globais para um elemento de treliça plana
104
Figura 5.7: a) sistema de coordenadas para obtenção da matriz de rigidez
geométrica de um elemento de treliça; b) configuração dos esforços de
tração no elemento.
Figura 6.1: Exemplo para a avaliação da solução numérica da equação de
Laplace. 113

Figura 6.2: a) malhas utilizadas no estudo; b)Valores da norma de erro da
equação (6.1.1) para várias malhas e números de pontos de Gauss. 113
Figura 6.3: Resultado para o potencial, obtido de forma analítica.
Figura 6.4: Resultado para o potencial, obtido pelo método híbrido através de
uma malha de 1x1 do elemento Q4, sobreposto ao resultado analítico. 114
Figura 6.5: Resultado para o potencial, obtido pelo método híbrido através de
uma malha de 2x2 do elemento Q4, sobreposto ao resultado analítico. 115
Figura 6.6: Resultado para o potencial, obtido pelo método híbrido através de
uma malha de 1x1 do elemento Q8, sobreposto ao resultado analítico. 115
Figura 6.7: Resultado para o potencial, obtido pelo método híbrido através de
uma malha de 2x2 do elemento Q8, sobreposto ao resultado analítico. 115
Figura 6.8: Resultado para o fluxo em x, obtido de forma analítica.
Figura 6.9: Resultado para o fluxo em x, obtido pelo método híbrido através de
uma malha de 1x1 do elemento Q4, sobreposto ao resultado analítico. 116
Figura 6.10: Resultado para o fluxo em x, obtido pelo método híbrido através de
uma malha de 2x2 do elemento Q4, sobreposto ao resultado analítico. 116
Figura 6.11: Resultado para o fluxo em x, obtido pelo método híbrido através de
uma malha de 1x1 do elemento Q8, sobreposto ao resultado analítico. 117
Figura 6.12: Resultado para o fluxo em x, obtido pelo método híbrido através de
uma malha de 2x2 do elemento Q8, sobreposto ao resultado analítico. 117
Figura 6.13: Resultado para o fluxo em y, obtido de forma analítica.
Figura 6.14: Resultado para o fluxo em y, obtido pelo método híbrido através de
uma malha de 1x1 do elemento Q4, sobreposto ao resultado analítico. 118
Figura 6.15: Resultado para o fluxo em y, obtido pelo método híbrido através de
uma malha de 2x2 do elemento Q4, sobreposto ao resultado analítico. 118
Figura 6.16: Resultado para o fluxo em y, obtido pelo método híbrido através de
uma malha de 1x1 do elemento Q8, sobreposto ao resultado analítico. 118
Figura 6.17: Resultado para o fluxo em y, obtido pelo método híbrido através de
uma malha de 2x2 do elemento Q8, sobreposto ao resultado analítico. 119
Figura 6.18: Geometria e condições de contorno do problema de condução de
calor transiente bidimensional em uma placa quadrada, e as malhas usadas
na discretização do problema.
Figura 6.19: Autovalores de acordo com a equação (2.7.1) para a malha 4x4 da
figura 6.18, usando-se de 1 a 4 matrizes de massa generalizada.
Figura 6.20: a) Resultados de temperatura ao longo da face Z = 0 para vários

instantes de tempo, obtidos com uma malha 3x3 de elementos quadráticos;

b) Detalhe para a curva de temperatura t = 0,75.
Figura 6.21: a) Resultados de temperatura ao longo da face Z = 0 para vários
instantes de tempo, obtidos com uma malha 4x4 de elementos quadráticos;
b) Detalhe para a curva de temperatura t = 0,75.
Figura 6.22: Autovalores de acordo com a equação (2.7.1) usando-se de 1 a 4
matrizes de massa generalizada, para três diferentes malhas de contorno.
122
Figura 6.23: a) Resultados de temperatura ao longo da face Z = 0 da figura 6.18
para vários instantes de tempo, obtidos com a malha Q24 de 24 nós (11
gdl); b) Detalhe para a curva de temperatura t = 0,75.
Figura 6.24: Exemplo de padrão de variação trigonométrica das propriedades do
material. 124
Figura 6.25: Autovalores de acordo com a equação (2.7.1) usando-se 1, 2 e 3
matrizes de massa generalizada. 124
Figura 6.26: Resultados de temperatura ao longo da face Z = 0 usando-se
malhas 2x2, 3x3 e 4x4. 125
Figura 6.27: Viga de comprimento L e altura c, sob carregamento de momento
fletor linear. 126
Figura 6.28: Malhas 1, 2 e 3, para uma viga de comprimento L = 100 e altura c =
10. 126
Figura 6.29: Malhas 4 e 5, para uma viga de comprimento L = 20 e altura c = 10
e Malhas 6 e 7, para uma viga de comprimento L = 10 e altura c = 20. 127
Figura 6.30: Análise de convergência dos elementos Q4 e Q8 para a viga da
figura 6.27 com comprimento L = 100 e altura c = 10 e submetida a
carregamento de momento fletor linear de acordo com a equação (6.4.1).
128
Figura 6.31: Viga de comprimento L e altura \emph{c} , sob carregamento de momento
fletor constante. 129
Figura 6.32: Barra fixa e livre submetida a carregamento dinâmico em sua
extremidade livre. 131
Figura 6.33: Deslocamento no tempo da extremidade livre da barra para a
solução de referência juntamente com uma malha de 1 elemento. 132
Figura 6.34: Deslocamento no tempo da extremidade livre da barra para a
solução de referência juntamente com uma malha de 2 elementos. 132

Figura 6.35: Deslocamento no tempo da extremidade livre da barra para a

132

solução de referência juntamente com uma malha de 3 elementos.

Figura 6.36: Deslocamento no tempo da extremidade livre da barra para a
solução de referência e para uma malha de três elementos com a utilização
de 1 matriz de massa. 133
Figura 6.37: Deslocamento no tempo da extremidade livre da barra para a
solução de referência e para uma malha de três elementos com a utilização
de 2 matrizes de massa. 133
Figura 6.38: Deslocamento no tempo da extremidade livre da barra para a
solução de referência e para uma malha de três elementos com a utilização
de 4 matrizes de massa. 133
Figura 6.39: Autovalores de acordo com a equação (2.7.1) para a malha de 3
elementos, usando-se de 1 a 4 matrizes de massa generalizada. 134
Figura 6.40: Pórtico plano com seis barras e doze graus de liberdade. 135
Figura 6.41: Carregamento dinâmico.
Figura 6.42: Resposta do grau de liberdade número 4. 136
Figura 6.43: Comparação entre os autovalores para a utilização de 1, 2, 3 e 4
matrizes de massa. 137
Figura 6.44: Resposta do grau de liberdade número 4 para um impulso de tempo
igual a 0,1 do tempo do impulso mostrado na figura 6.41.
Figura 6.45: treliça plana com 3 graus de liberdade. 139
Figura 6.46: deslocamentos horizontais no tempo do nó 2 da treliça para a
utilização de 1 a 8 matrizes de massa (amplitudes decrescentes nos
primeiros instantes de tempo). 140
Figura 6.47: deslocamentos horizontais no tempo do nó 2 da treliça da figura
6.45 obtidos pela utilização de elementos de viga de Bernoulli-Euler com a
utilização de 1 a 4 matrizes de massa (mesma convenção de cores da
figura 6.46). 140
Figura 6.48: Comparação entre as freqüências encontradas com a utilização de
1 a 8 matrizes de massa: a convergência se dá por valores superiores. 141
Figura D.1: a) Sistema de coordenadas naturais (sem deslocamentos de corpo
rígido) de um elemento de treliça; b) sistema de coordenadas globais de um
elemento de treliça. 157
Figura D.2: Deslocamentos unitários do sistema global do elemento medidos a
partir do sistema natural. 158
Figura D.3: Sistema de coordenadas local (com apenas 1 deslocamento de
corpo rígido) de um elemento de treliça.
Figura D.4: Sistema de coordenadas local (com três deslocamentos de corpo

rígido) de um elemento de treliça plana.	159
Figura D.4: a) Sistema de coordenadas local (com três deslocamentos de c	orpo
rígido) de um elemento de viga; b) sistema de coordenadas global de	e um
elemento de viga.	161
Figura E.1: Configurações de carregamento sobre um cabo flexível: a)	cabo
sujeito a forças concentradas F; b) cabo sob carregamento distribuío	w ot
	163
Figura E.2: Diagrama do corpo livre de um elemento infinitesimal de cabo.	164
Figura E.3: Configuração de eixos e carregamento em um cabo parabólico.	165
Figura E.4: a) cabo em catenária e eixos coordenados; b) diagrama de o	orpo
livro de uma porção finita do cabo de comprimento s .	167
Figura F 1: Graus de liberdade de um elemento de viga plana	169

Lista de tabelas

Tabela 3.1: Resumo de elementos 2D e 3D para problemas de potencial.	65
Tabela 3.2: Resumo de elementos 2D e 3D para problemas de elasticidade.	71
Tabela 4.1: Resumo das soluções $p(z)$ e $k(z)$ para os padrões de varia	аçãо
adotados.	92
Tabela 4.2: Resumo das soluções $p(z')$, $k_z(z')$ e $c(z')$ para os padrões de varia	ação
adotados de difusividade térmica $a(z') = k_z(z')/c(z')$.	92
Tabela 6.1: Resumo dos elementos e malhas do exemplo 6.1, com valore	s de
referência N da figura 6.2.	113
Tabela 6.2: Deslocamento vertical (x10 ³) do nó da extremidade inferior direit	a da
viga da figura (6.27) para as diferentes configurações de m	alha
apresentadas nas figuras 6.28 e 6.29.	127

Tabela 6.3: Deslocamentos verticais $(multiplicados por -1,0 \times 10^3) do nó da$

configurações de malha apresentadas nas figuras 6.28 e 6.29.

extremidade inferior direita da viga da figura 6.31 para as diferentes

129