Título: | HETERODIMENSIONAL CYCLES OF CO-INDEX TWO AND SYMBOLIC BLENDERS | |||||||
Autor: |
YURI KI |
|||||||
Colaborador(es): |
LORENZO JUSTINIANO DIAZ CASADO - Orientador |
|||||||
Catalogação: | 23/DEZ/2021 | Língua(s): | ENGLISH - UNITED STATES |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56754&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56754&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.56754 | |||||||
Resumo: | ||||||||
In the first part of the thesis, we consider diffeomorphisms having heterodimensional
cycles associated with a pair of saddles P and Q of co-index
two. We prove that diffeomorphisms with cycles, which have at least one
pair of non-real central eigenvalues, generate robust heterodimensional cycles.
Moreover, when both central eigenvalues are non-real, the robust cycles
are associated with the continuation of the initial saddles (i.e. the cycle can
be stabilized). In the second part of this work we study skew product maps
over Bernoulli shifts with contracting fibers and Holder dependence on the
base points. We prove that systems satisfying the covering property exhibit
symbolic blenders. These blenders are generalizations of the usual blenders
whose main property is that their central direction may have any dimension
d greater than or equal to 1.
|
||||||||