Symbolic blenders in the Hölder setting

In this section we prove Theorem C. First, we introduce some notation and preliminary results.

Given a finite word $\bar{\omega} = \omega_{-m} \dots \omega_{-1} \omega_0 \omega_1 \dots \omega_n$, where $m, n \geq 0$ and $\omega_i \in \{1, \dots, k\}$, we define the *bi-lateral cylinder* by

$$C_{\bar{\omega}} \stackrel{\text{def}}{=} \{ \xi \in \Sigma_k \colon \xi_j = \omega_j, \ -n \le j \le n \}.$$

Given $\zeta \in \Sigma_k$ and a word $\bar{\omega} := \bar{\omega}_{-n} = \omega_{-n} \dots \omega_{-1}$, where $n \geq 1$ and $\omega_i \in \{1, \dots, k\}$, we define the relative cylinder by

$$\mathcal{C}_{\bar{\omega}}(\zeta) \stackrel{\text{def}}{=} \{ \xi \in W^s_{loc}(\zeta; \tau) : \xi_{-i} = \omega_i, \text{ for } i = 1, \dots, n \}.$$
 (9.1)

Recall that $S = S_{k,\lambda,\beta}^{0,\alpha}$ is the set of symbolic skew product maps in Definition 1.7. Let us observe that in what follows $\nu^{\alpha} < \lambda < 1$, $\alpha > 0$, and there is no restriction on β . In the next lemma we estimate the distance between the backward orbits of a point x when iterated by different maps ψ_{ξ}^{-1} .

Lemma 9.1. Consider $\Psi = \tau \ltimes \psi_{\xi} \in \mathcal{S}$, a word $\bar{\omega} = \omega_{-n} \dots \omega_0 \dots \omega_n$, and a point $x \in \overline{D}$ such that for every $\zeta \in \mathcal{C}_{\bar{\omega}}$ one has that $\psi_{\tau^{-1}(\zeta)}^{-j}(x) \in \overline{D}$ for every $1 \leq j \leq n$. Then it holds

$$\|\psi_{\tau^{-1}(\xi)}^{-i}(x) - \psi_{\tau^{-1}(\zeta)}^{-i}(x)\| < C_{\Psi} \nu^{\alpha(n-i)} \sum_{j=0}^{i-1} (\lambda^{-1} \nu^{\alpha})^{j},$$

for all $1 \leq i \leq n$ and all $\xi, \zeta \in \mathcal{C}_{\bar{\omega}}$.

Proof. The proof is by induction. For i=1, the Hölder inequality (1.4) and $\xi, \zeta \in \mathcal{C}_{\bar{\omega}}$ imply that

$$\|\psi_{\tau^{-1}(\xi)}^{-1}(x) - \psi_{\tau^{-1}(\zeta)}^{-1}(x)\| \le C_{\Psi} d_{\Sigma_k}(\tau^{-1}(\xi), \tau^{-1}(\zeta))^{\alpha} \le C_{\Psi} \nu^{\alpha(n-1)}.$$

We argue inductively. Suppose that the lemma holds for i - 1, i < n:

$$\left\| \psi_{\tau^{-1}(\xi)}^{-(i-1)}(x) - \psi_{\tau^{-1}(\zeta)}^{-(i-1)}(x) \right\| < C_{\Psi} \nu^{\alpha(n-i+1)} \sum_{j=0}^{i-2} (\lambda^{-1} \nu^{\alpha})^{j}, \tag{9.2}$$

for every $\xi, \zeta \in \mathcal{C}_{\bar{\omega}}$. We will see that the estimate also holds for i. By the triangle inequality, one has that

$$\begin{aligned} \left\| \psi_{\tau^{-1}(\xi)}^{-i}(x) - \psi_{\tau^{-1}(\zeta)}^{-i}(x) \right\| &\leq \left\| \psi_{\tau^{-1}(\xi)}^{-i}(x) - \psi_{\tau^{-i}(\xi)}^{-1} \circ \psi_{\tau^{-1}(\zeta)}^{-(i-1)}(x) \right\| + \\ &+ \left\| \psi_{\tau^{-i}(\xi)}^{-1} \circ \psi_{\tau^{-1}(\zeta)}^{-(i-1)}(x) - \psi_{\tau^{-1}(\zeta)}^{-i}(x) \right\|. \end{aligned}$$

Since the inverse of these functions expand at most $1/\lambda$, we get that the above equation is less than or equal to

$$\frac{1}{\lambda} \left\| \psi_{\tau^{-1}(\xi)}^{-(i-1)}(x) - \psi_{\tau^{-1}(\zeta)}^{-(i-1)}(x) \right\| + \left\| \psi_{\tau^{-i}(\xi)}^{-1}(y) - \psi_{\tau^{-i}(\zeta)}^{-1}(y) \right\|,$$

where $y = \psi_{\tau^{-1}(\zeta)}^{-(i-1)}(x) \in \overline{D}$. By induction hypothesis (9.2) we obtain

$$\frac{1}{\lambda} \left\| \psi_{\tau^{-1}(\xi)}^{-(i-1)}(x) - \psi_{\tau^{-1}(\zeta)}^{-(i-1)}(x) \right\| \le C_{\Psi} \lambda^{-1} (\nu^{\alpha})^{n-i+1} \sum_{j=0}^{i-2} (\lambda^{-1} \nu^{\alpha})^{j}.$$

As $y \in \overline{D}$ applying the Hölder inequality (1.4) and since $\xi, \zeta \in \mathcal{C}_{\bar{\omega}}$ we get

$$\|\psi_{\tau^{-i}(\xi)}^{-1}(y) - \psi_{\tau^{-i}(\zeta)}^{-1}(y)\| \le C_{\Psi} \nu^{\alpha(n-i)}$$

Putting togheter the previous inequalities we get

$$C_{\Psi} \lambda^{-1} (\nu^{\alpha})^{n-i+1} \sum_{j=0}^{i-2} (\lambda^{-1} \nu^{\alpha})^{j} + C_{\Psi} \nu^{\alpha(n-i)} = C_{\Psi} \nu^{\alpha(n-i)} \sum_{j=0}^{i-1} (\lambda^{-1} \nu^{\alpha})^{j},$$

ending the proof of the lemma.

9.1 Proof of Theorem C

Consider a one-step map $\Phi = \tau \ltimes (\phi_1, \dots, \phi_k) \in \mathcal{S}$ and an open subset B of D. Recall that we need to prove the following:

B has the covering property for $\mathcal{G}_{\phi_1,\dots,\phi_k} \iff$ there are $\delta > 0$ and a neighborhood \mathcal{V} of Φ in \mathcal{S} such that $\Gamma_{\Psi}^+(\Sigma_k \times B) \cap H^s \neq \emptyset$ for every $\Psi \in \mathcal{V}$ and every δ -horizontal disk H^s in $\Sigma_k \times B$.

We see that if the covering property is not satisfied then intersection (1.10) is also not satisfied. If B does not satisfy the covering property then there is $x \in \overline{B}$ such that $x \notin \phi_i(B)$ for all i = 1, ..., k. First note that we can assume that $x \in B$. Otherwise, we can take an arbitrarily small perturbation $\Psi = \tau \ltimes (\psi_1, ..., \psi_k)$ of Φ such that the covering property in B for

IFS (ψ_1, \ldots, ψ_k) is not satisfied for a point in B. The condition $x \notin \phi_i(B)$ for all $i = 1, \ldots, k$ implies that $\Phi^{-1}(\xi, x) \notin \Sigma_k \times \overline{B}$ for all $\xi \in \Sigma_k$ and hence

$$(\xi, x) \not\in \bigcap_{n\geq 0} \Phi^n(\Sigma_k \times \overline{B}) \stackrel{\text{def}}{=} \Gamma_{\Phi}^+(\Sigma_k \times B) \text{ for all } \xi \in \Sigma_k.$$

Therefore $\Gamma_{\Phi}^{+}(\Sigma_{k} \times B)$ does not meet the horizontal disk $H^{s} = W_{loc}^{s}(\xi; \tau) \times \{x\}$, and thus the intersection property (1.10) is not verified.

⇒ We split the proof of the fact that the covering property implies the intersection condition into two steps.

Choice of the neighborhood \mathcal{V} of Φ . First recall that given an open covering \mathcal{C} of a compact set X of a metric space there is a constant L > 0, a Lebesgue number of \mathcal{C} , such that every subset of X with diameter less than L is contained in some member of \mathcal{C} .

Let 2L > 0 be a Lebesgue number of the covering $\{\phi_1(B), \ldots, \phi_k(B)\}$ of the set \overline{B} . Note that there are C^0 -neighborhoods \mathcal{U}_i of ϕ_i such that the family

$$B_i = \operatorname{int}\left(\bigcap_{\psi \in \mathcal{U}_i} \psi(B)\right), \quad i = 1, \dots, k,$$

$$(9.3)$$

is an open covering of \overline{B} . By shrinking the size of the sets \mathcal{U}_i we can assume that L is a Lebesgue number of this covering. We can also assume that any $\psi \in \mathcal{U}_i$ is a C^0 - (λ, β) -Lipschitz map on \overline{D} for all $i = 1, \ldots, k$.

We take a neighborhood \mathcal{V} of Φ in \mathcal{S} such that if $\Psi = \tau \ltimes \psi_{\xi} \in \mathcal{V}$ then $\psi_{\xi} \in \mathcal{U}_{\xi_0} = \mathcal{U}_i$. In that case, by (9.3), we get that

$$\psi_{\tau^{-1}(\xi)}^{-1}(\overline{B}_{\xi_0}) \subset B \quad \text{for all } \xi \in \Sigma_k.$$
 (9.4)

Since Φ is a one-step map then $\phi_{\xi} = \phi_{\zeta}$ if $\xi_0 = \zeta_0$, hence we can take the Hölder constant $C_{\Phi} = 0$. The definition of the distance in (1.6) implies that C_{Ψ} is close to $C_{\Phi} = 0$. Since, by hypothesis, $\nu^{\alpha} < \lambda$, by shrinking the neighborhood \mathcal{V} we can assume that for every $\Psi = \tau \ltimes \psi_{\xi} \in \mathcal{V}$ it holds

$$C_{\Psi} \sum_{i=0}^{\infty} (\lambda^{-1} \nu^{\alpha})^{i} < L/2.$$
 (9.5)

This completes the choice of the neighborhood \mathcal{V} of Φ .

Existence of a point in $\Gamma_{\Psi}^+(\Sigma_k \times B) \cap H^s$. The main step is the following proposition.

Proposition 9.2. Let V the neighborhood of Φ above. Consider small $\delta > 0$ and a δ -horizontal disk H^s associated to $W^s_{loc}(\zeta;\tau) \times \{z\}$ for some $(\zeta,z) \in \Sigma_k \times B$. Then there are a sequence of nested compact subsets $\{V_n\}$ of B contained in $\mathscr{P}(H^s)$ and a sequence $\xi \in W^s_{loc}(\zeta;\tau)$ such that for all $\Psi = \tau \ltimes \psi_{\xi} \in V$ it

holds

$$\psi_{\tau^{-1}(\xi)}^{-n}(V_n) \subset B$$
 and $\operatorname{diam}(\psi_{\tau^{-1}(\xi)}^{-n}(V_n)) \to 0$.

Let us see how the implication (\Longrightarrow) follows from this proposition. Let $\{x\} = \cap_n V_n$. By the first part of the proposition $\psi_{\tau^{-1}(\xi)}^{-n}(x) \in B$ for all $n \in \mathbb{N}$ and thus $\Psi^{-n}(\xi, x) \in \Sigma_k \times B$ for all $n \in \mathbb{N}$ and hence $(\xi, x) \in \Gamma_{\Psi}^+(\Sigma_k \times B)$. Note that since $\xi \in W_{loc}^s(\zeta; \tau)$ and $x \in \mathscr{P}(H^s)$ then we also have $(\xi, x) \in H^s$. Thus $\Gamma_{\Psi}^+(\Sigma_k \times B) \cap H^s \neq \emptyset$.

To complete the proof of Theorem C it remains to prove the proposition.

Proof of Proposition 9.2. Consider $\delta > 0$ such that $\lambda^{-1}\delta < L/2$ for the δ -horizontal disk H^s associated to $W^s_{loc}(\zeta;\tau) \times \{z\}$ and the (α,C) -Hölder graph map h (see Definition 1.9). The construction of the nested sequence of sets $\{V_n\}$ and the point $\xi \in W^s_{loc}(\zeta;\tau)$ is done inductively. Let

$$V := \mathscr{P}(H^s) \subset B$$
.

Note that $\operatorname{diam}(V) \leq 2\delta < L$. Thus, by the definition of the Lebesgue number, $V \subset B_{i_1}$ for some $i_1 \in \{1, \dots, k\}$. Recall the definition of the relative cylinder in (9.1) associated to $\zeta \in \Sigma_k$ and the word $\bar{\omega}_{-1} = i_1$ and consider the set

$$V_1 := \mathscr{P}(H^s \cap (\mathcal{C}_{\bar{\omega}_{-1}}(\zeta) \times V)).$$

By construction, $V_1 \subset V \subset B_{i_1}$. Thus, by (9.4), for every $\Psi = \tau \ltimes \psi_{\xi} \in \mathcal{V}$ one has that

$$\psi_{\tau^{-1}(\xi)}^{-1}(V_1) \subset B.$$
 (9.6)

Claim 9.3. diam $(V_1) \leq \delta_1 \stackrel{\text{def}}{=} C \nu^{2\alpha}$.

Proof. Given x and y in V_1 there are ξ and η in $\mathcal{C}_{\bar{\omega}_{-1}}(\zeta)$ such that $x = h(\xi)$ and $y = h(\eta)$. Since h is (α, C) -Hölder continuous we have

$$||x - y|| = ||h(\xi) - h(\eta)|| \le C d_{\Sigma_k}(\xi, \eta)^{\alpha} \le C \nu^{2\alpha} = \delta_1,$$

proving the claim.

By Claim 9.3 and since for every $\Psi = \tau \ltimes \psi_{\xi} \in \mathcal{V}$ the maps ψ_{ξ} are (λ, β) -Lipschitz we have that

$$\operatorname{diam} \left(\psi_{\tau^{-1}(\xi)}^{-1}(V_1) \right) \leq \lambda^{-1} \delta_1 \quad \text{for all } \xi \in \mathcal{C}_{\bar{\omega}_{-1}}(\zeta).$$

Recalling that $C\nu^{\alpha} < \delta$ (see Definition 1.9) we get

$$\lambda^{-1}\delta_1 = \lambda^{-1}C\nu^{2\alpha} \le \lambda^{-1}C\nu^{\alpha} < \lambda^{-1}\delta \le L/2.$$

Therefore

$$\operatorname{diam}\left(\psi_{\tau^{-1}(\xi)}^{-1}(V_1)\right) \le \lambda^{-1}\delta_1 \le L/2.$$

Arguing inductively, suppose that we have constructed words $\bar{\omega}_{-n} := \omega_{-n} \dots \omega_{-1}$ (the word $\bar{\omega}_{-i}$ is obtained adding the letter ω_{-i} to the word $\bar{\omega}_{-i+1}$) and closed sets $V_n \subset V_{n-1} \subset \dots \subset V_1$ with

$$\operatorname{diam}(V_n) \le C\nu^{(n+1)\alpha} \stackrel{\text{def}}{=} \delta_n \tag{9.7}$$

and such that for every $\Psi = \tau \ltimes \psi_{\xi} \in \mathcal{V}$ one has that for all $\xi \in \mathcal{C}_{\bar{\omega}_{-n}}(\zeta)$ it holds

$$\psi_{\tau^{-1}(\xi)}^{-n}(V_n) \subset B$$
 and $\operatorname{diam}(\psi_{\tau^{-1}(\xi)}^{-n}(V_n)) \le \lambda^{-n}\delta_n$. (9.8)

We now construct the word $\bar{\omega}_{-(n+1)}$ and the closed set $V_{n+1} \subset V_n$ satisfying analogous inclusions and inequalities. By (9.8) we have that

$$A_n \stackrel{\text{def}}{=} \bigcup_{\xi \in \mathcal{C}_{\bar{\omega}_{-n}}(\zeta)} \psi_{\tau^{-1}(\xi)}^{-n}(V_n) \subset B.$$

Claim 9.4. $\operatorname{diam}(A_n) < L$.

Proof. Given \bar{x} and \bar{y} in A_n there are $x, y \in V_n$ and $\xi, \eta \in \mathcal{C}_{\bar{\omega}_{-n}}(\zeta)$ such that $\bar{x} = \psi_{\tau^{-1}(\xi)}^{-n}(x)$ and $\bar{y} = \psi_{\tau^{-1}(\eta)}^{-n}(y)$. Then

$$\|\bar{x} - \bar{y}\| = \|\psi_{\tau^{-1}(\xi)}^{-n}(x) - \psi_{\tau^{-1}(\eta)}^{-n}(y)\|$$

$$\leq \|\psi_{\tau^{-1}(\xi)}^{-n}(x) - \psi_{\tau^{-1}(\eta)}^{-n}(x)\| + \|\psi_{\tau^{-1}(\eta)}^{-n}(x) - \psi_{\tau^{-1}(\eta)}^{-n}(y)\|$$

$$\leq C_{\Psi} \sum_{j=0}^{n-1} (\lambda^{-1} \nu^{\alpha})^{j} + \lambda^{-n} \delta_{n}$$

$$\leq L/2 + \lambda^{-n} \delta_{n},$$

$$(9.9)$$

where (9.9) follows from Lemma 9.1 and induction hypothesis (9.8), and the last inequality (9.10) follows from (9.5). Note also that

$$\lambda^{-n} \, \delta_n = \lambda^{-n} \, C(\nu^{\alpha})^{n+1} \le C \, (\lambda^{-1} \nu^{\alpha})^n \le C \, \lambda^{-1} \nu^{\alpha} < \lambda^{-1} \delta < L/2.$$

Therefore for every pair of points $\bar{x}, \bar{y} \in A_n$ we have $\|\bar{x} - \bar{y}\| < L$ and thus $\operatorname{diam}(A_n) < L$, proving the claim.

As L is a Lebesgue number of the covering $\{B_i\}_{i=1}^k$, the claim implies that there is $i_{n+1} \in \{1, \dots, k\}$ such that $A_n \subset B_{i_{n+1}}$. We let

$$\bar{\omega}_{-(n+1)} = i_{n+1}\omega_{-n}\dots\omega_{-1}$$
 and $V_{n+1} = \mathscr{P}\big(H^s \cap (\mathcal{C}_{\bar{\omega}_{-(n+1)}}(\zeta) \times V_n)\big).$

Note that by construction $V_{n+1} \subset V_n$.

Claim 9.5. diam $(V_{n+1}) \leq C \nu^{(n+2)\alpha} \stackrel{\text{def}}{=} \delta_{n+1}$.

Proof. Just note that given $x, y \in V_{n+1}$ there are $\xi, \eta \in C_{\bar{\omega}_{-(n+1)}}(\zeta)$ such that $x = h(\xi)$ and $y = h(\eta)$. From the (α, C) -Hölder continuity of h and since $\xi, \eta \in C_{\bar{\omega}_{-(n+1)}}(\zeta)$ we get

$$||x - y|| \le C d_{\Sigma_k}(\xi, \eta)^{\alpha} \le C \nu^{(n+2)\alpha}.$$

Thus diam $(V_n) \le C \nu^{(n+2)\alpha} = \delta_{n+1}$.

Using $V_{n+1} \subset V_n$, diam $(V_n) \leq \delta_{n+1}$, and Equations (9.4) and (9.8) we get that for all $\Psi = \tau \ltimes \psi_{\xi} \in \mathcal{V}$ it holds

$$\psi_{\tau^{-1}(\xi)}^{-(n+1)}(V_{n+1}) \subset B$$
 and $\operatorname{diam}\left(\psi_{\tau^{-1}(\xi)}^{-(n+1)}(V_{n+1})\right) \le \lambda^{-(n+1)}\delta_{n+1},$ (9.11)

for every $\xi \in \mathcal{C}_{\bar{\omega}_{-(n+1)}}(\zeta)$. Therefore (9.8) holds for n+1-step and we can continue arguing inductively. This completes the construction of the sequence of nested sets V_n in the proposition. Observe that the sequence ξ whose positive part is ζ and whose negative part satisfies $\xi_{-n} = \omega_{-n}$ belongs to $\mathcal{C}_{\bar{\omega}_{-(n+1)}}(\zeta) \subset W^s_{loc}(\zeta;\tau)$. This completes the proof of the proposition.

The proof of Theorem C is now complete. \Box