Simple cycles: the  $(\mathbb{C},\mathbb{C})$  case

We consider a diffeomorphism  $f: M \to M$  having heterodimensional cycle of co-index two associated with a pair of saddles P and Q of indices s+2and s, respectively, that is central separated. Let  $s + 2 + u = d = \dim(M)$ , where  $s, u \geq 1$ . This means that if  $\alpha_1, \ldots, \alpha_d$  are the eigenvalues of  $Df_P^{\pi(P)}$ ordered in increasing modulus then  $|\alpha_s| < |\alpha_{s+1}|$ . Similarly, if  $\beta_1, \ldots, \beta_d$  are the eigenvalues of  $Df_O^{\pi(Q)}$  ordered in increasing modulus then  $|\beta_{s+2}| < |\beta_{s+3}|$ .

There are four possibilities according to the central eigenvalues of the cycle: (A) all central eigenvalues of the cycle are non-real; (B) either the central eigenvalues associated with P are real and the central eigenvalues associated with Q are non-real or vice-versa; (C) central eigenvalues of the cycle are real and equal in modulus; and (D) all central eigenvalues of the cycle are real and different in modulus.

We say that a diffeomorphism f has a  $(\mathbb{C},\mathbb{C})$ -cycle if it has a heterodimensional cycle of co-index two associated with saddles P and Q which is central separated, such that the central eigenvalues of Q are equal in modulus and the central eigenvalues of P are also equal in modulus (cases (A) and (C)). Analogously we say that a diffeomorphism f has a  $(\mathbb{R}, \mathbb{C})$ -cycle if it has a heterodimensional cycle of co-index two associated with saddles P and Qwhich is central separated, such that the central eigenvalues of Q are real and different in modulus and the central eigenvalues of P are non-real (case (B)). We will study  $(\mathbb{C}, \mathbb{C})$ -cycles in this chapter and Chapter 3, and  $(\mathbb{R}, \mathbb{C})$ -cycles in Chapter 4.

Following closely [5], we prove that arbitrarily  $C^1$ -close to these heterodimensional cycles there are new cycles (associated with the same saddles) such that the dynamics in a neighborhood of these cycles is "affine" and partially hyperbolic (with bidimensional central direction). This new cycle is called *simple*, see Definition 2.1. The key point is that the dynamics of simple cycles can be essentially reduced to the analysis of a bidimensional iterated function system, where the details will be given in the next chapter.

## 2.1 Partially hyperbolic dynamics

We start defining partial hyperbolicity. Given a diffeomorphism  $f \in \mathrm{Diff}^1(M)$  and an f-invariant set  $\Lambda$ , a Df-invariant splitting with two bundles  $E \oplus F$  of TM over  $\Lambda$  is dominated if there are constants m > 0 and k < 1 such that

$$||Df_x^m|_E|| \cdot ||Df_x^{-m}|_F|| < k$$
, for every  $x \in \Lambda$ ,

where  $\|\cdot\|$  is the metric of M.

An Df-invariant splitting with three bundles  $E \oplus F \oplus G$  is dominated if the bundles  $(E \oplus F) \oplus G$  and  $E \oplus (F \oplus G)$  are both dominated.

Assume that f has a heterodimensional cycle of co-index two associated with the saddles P and Q of indices s+2 and s as above. We define  $E_P^{ss}$  and  $E_P^c$  as the  $Df_P^{\pi(P)}$ -invariant spaces corresponding to the eigenvalues  $(\alpha_1,\ldots,\alpha_s)$  and  $(\alpha_{s+1},\alpha_{s+2})$ , respectively. Since  $|\alpha_s|<|\alpha_{s+1}|\leq |\alpha_{s+2}|<1<|\alpha_{s+2}|$  these spaces are well defined and contained in the stable bundle of P. For a point A in the orbit  $\mathcal{O}_P$  of P we let  $E_A^{ss}$  and  $E_A^c$  the corresponding iterates of  $E_P^{ss}$  and  $E_P^c$  by Df. Note that the stable bundle of  $A\in\mathcal{O}_P$  is  $E_A^s=E_A^{ss}\oplus E_A^c$ . We proceed similarly with the point Q considering the  $Df_Q^{\pi(Q)}$ -invariant subespaces  $E_Q^{uu}$  and  $E_Q^c$  of the unstable bundle  $E_Q^u$  corresponding to the eigenvalues  $(\beta_{s+2+1},\ldots,\beta_d)$  and  $(\beta_{s+1},\beta_{s+2})$  of  $Df_Q^{\pi(Q)}$ . We also consider the Df-invariant extensions of these bundles to the orbit of Q. In this way we obtain a Df-invariant dominated splitting defined over the orbits of P and Q. For notational convenience we write  $E_B^{ss}=E_B^s$  if  $B\in\mathcal{O}_Q$  and  $E_A^{uu}=E_A^u$  if  $A\in\mathcal{O}_P$ . Then the splitting

$$T_A M = E_A^{ss} \oplus E_A^c \oplus E_A^{uu}, \text{ if } A \in \mathcal{O}_P \cup \mathcal{O}_Q$$

is well defined and dominated. Since the directions  $E^{ss}$  and  $E^{uu}$  are uniformly hyperbolic (contracting and expanding, respectively), we say that this splitting is partially hyperbolic.

## 2.2 $(\mathbb{C},\mathbb{C})$ -Simple cycles

Let us start with an informal discussion about simple cycles. We will perform a series of perturbations of the initial cycle to get a new diffeomorphism with a heterodimensional cycle associated with the same saddles and such that the dynamics in the cycle is "affine".

Fix heteroclinic points  $X \in W^s(\mathcal{O}_P) \cap W^u(\mathcal{O}_Q)$  and  $Y \in W^u(\mathcal{O}_P) \cap W^s(\mathcal{O}_Q)$ . After an arbitrarily small perturbation we can assume that X is a transverse intersection and Y is a quasi-transverse one. We also can assume

that there are small neighbourhoods  $\mathcal{U}_P$  and  $\mathcal{U}_Q$  of the orbits of P and Q, respectively, where f is linear. After replacing X by some backward iterate and Y by some forward iterate, and after a new perturbation, we will see that there are small neighbourhoods  $\mathcal{U}_X \subset \mathcal{U}_Q$  of X and  $\mathcal{U}_Y \subset \mathcal{U}_P$  of Y and large natural numbers n and m such that  $f^n(\mathcal{U}_X) \subset \mathcal{U}_P$ ,  $f^m(\mathcal{U}_Y) \subset \mathcal{U}_Q$ , and  $f^n$  and  $f^m$  are affine maps (in local coordinates).

We fix the "neighbourhood of the cycle"

$$\mathcal{V} = \mathcal{U}_P \cup \mathcal{U}_Q \cup \Big(igcup_{i=-n}^n f^iig(\mathcal{U}_Xig)\Big) \cup \Big(igcup_{i=-m}^m f^iig(\mathcal{U}_Yig)\Big)$$

and study the dynamics of f in this neighborhood. Using that this dynamics is affine and partially hyperbolic (with a partially hyperbolic splitting of the form  $E^{ss} \oplus E^c \oplus E^{uu}$  where  $E^c$  is bidimensional), considering the quotient by the strong stable  $E^{ss}$  and strong unstable  $E^{uu}$  directions we will reduce this analysis to the study of a bidimensional iterated function system. We now go to the details of these constructions.

Given a complex number  $\tau = \delta e^{2\pi i \psi}$ , we consider the matrix

$$C_{\tau} = \delta \begin{pmatrix} \cos 2\pi \psi & -\sin 2\pi \psi \\ \sin 2\pi \psi & \cos 2\pi \psi \end{pmatrix}, \quad \delta > 0, \ \psi \in [0, 1).$$

We now define linear maps  $C_{\alpha}, C_{\beta} \colon \mathbb{R}^2 \to \mathbb{R}^2$  whose eigenvalues are

$$(\alpha \stackrel{\text{def}}{=} \alpha_{s+1} = \rho e^{2\pi i \phi}, \alpha_{s+2}) \quad \text{and} \quad (\beta \stackrel{\text{def}}{=} \beta_{s+1} = \rho e^{2\pi i \varphi}, \beta_{s+2}), \tag{2.1}$$

respectively, where  $0 < \rho < 1 < \varrho$  and  $\phi, \varphi \in [0, 1)$ .

We also define the linear reflection along the X-axis by  $E_X$ .

**Definition 2.1** (( $\mathbb{C}, \mathbb{C}$ )-Simple cycle). A diffeomorphism f has a ( $\mathbb{C}, \mathbb{C}$ )-simple cycle of co-index two associated with P and Q and this cycle is unfolded in a simple way by the family  $(f_t)_{t\in[-\epsilon,\epsilon]^2}$ ,  $f_0=f$ , if the following conditions hold:

i) There are local charts  $\mathcal{U}_P$  and  $\mathcal{U}_Q$  around P and Q

$$\mathcal{U}_P, \, \mathcal{U}_Q \cong [-1, 1]^s \times [-1, 1]^2 \times [-1, 1]^u,$$

where  $f_t^{\pi(P)} \stackrel{\text{def}}{=} \mathcal{A}_t = \mathcal{A}$  and  $f_t^{\pi(Q)} \stackrel{\text{def}}{=} \mathcal{B}_t = \mathcal{B}$  are linear maps of the form

$$\mathcal{A}(x^s, x^c, x^u) = \left(A^s(x^s), C_{\alpha}(x^c), A^u(x^u)\right) \quad and$$
$$\mathcal{B}(x^s, x^c, x^u) = \left(B^s(x^s), C_{\beta}(x^c), B^u(x^u)\right),$$

where  $A^s, B^s : \mathbb{R}^s \to \mathbb{R}^s$  are contractions, corresponding to the contracting eigenvalues  $(\alpha_1, \ldots, \alpha_s)$  and  $(\beta_1, \ldots, \beta_s)$ , and  $A^u, B^u : \mathbb{R}^u \to \mathbb{R}^u$  are expansions, corresponding to the expanding eigenvalues  $(\alpha_{s+3}, \ldots, \alpha_d)$  and  $(\beta_{s+3}, \ldots, \beta_d)$ .

ii) There is a partially hyperbolic splitting  $E^{ss} \oplus E^c \oplus E^{uu}$ , defined over the orbits of P and Q, such that in these local charts they are of the form

$$E^{ss} = \mathbb{R}^s \times \{0^2\} \times \{0^u\}, \ E^c = \{0^s\} \times \mathbb{R}^2 \times \{0^u\}, \ E^{uu} = \{0^s\} \times \{0^2\} \times \mathbb{R}^u.$$

- iii) There are a quasi-transverse<sup>1</sup> heteroclinic point  $Y_P \in W^u(\mathcal{O}_P) \cap W^s(\mathcal{O}_Q)$ in the neighborhood  $\mathcal{U}_P$ , a natural number  $\ell > 0$ , and a neighborhood  $\mathcal{U}_{Y_P}$ of  $Y_P$  in  $\mathcal{U}_P$ , such that, in these local coordinates:
  - $Y_P = (0^s, 0^2, y_P^u)$ , where  $y_P^u \in [-1, 1]^u$ ;
  - $Y_Q = f_t^{\ell}(Y_P) \in \mathcal{U}_Q$  and  $Y_Q = (y_Q^s, 0^2, 0^u)$ , where  $y_Q^s \in [-1, 1]^s$ ;
  - $f_t^{\ell}(\mathcal{U}_{Y_P}) \subset \mathcal{U}_Q$  and

$$f_t^{\ell} \stackrel{\text{def}}{=} T_{PQ,t} : \mathcal{U}_{Y_P} \to f_t^{\ell}(\mathcal{U}_{Y_P})$$

is an affine map of the form

$$T_{PQ,t}(x^s, x^c, x^u) = \left(T_{PQ}^s(x^s) + y_Q^s, T_{PQ}^c(x^c) + t, T_{PQ}^u(x^u - y_P^u)\right),$$

where  $T_{PQ}^s \colon \mathbb{R}^s \to \mathbb{R}^s$  is a linear contraction (independent of t),  $T_{PQ}^u \colon \mathbb{R}^u \to \mathbb{R}^u$  is a linear expansion (which also does not depend on t) and  $T_{PQ}^c \colon \mathbb{R}^2 \to \mathbb{R}^2$  is either  $\pm \mathrm{Id}$  or the reflection  $E_{\mathbb{X}}$ .

- iv) There are a transverse heteroclinic point  $X_Q \in W^u(\mathcal{O}_Q) \pitchfork W^s(\mathcal{O}_P)$  in the neighborhood  $\mathcal{U}_Q$ , a natural number r > 0, and a neighborhood  $\mathcal{U}_{X_Q}$  of  $X_Q$  in  $\mathcal{U}_Q$  such that, in these local coordinates:
  - $X_Q = (0^s, x_Q^c, 0^u)$ , where  $x_Q \in \mathbb{R}^2$ ;
  - $X_P = f_t^r(X_Q) \in \mathcal{U}_P$  and  $X_P = (0^s, x_P^c, 0^u)$ , where  $x_P \in \mathbb{R}^2$ ;
  - $f_t^r(\mathcal{U}_{X_O}) \subset \mathcal{U}_P$  and

$$f_t^r \stackrel{\text{def}}{=} T_{QP,t} = T_{QP} : \mathcal{U}_{X_O} \to f_t^r(\mathcal{U}_{X_O})$$

is an affine map of the form

$$T_{QP}(x^s, x^c, x^u) = (T_{QP}^s(x^s), T_{QP}^c(x^c) - x_Q^c + x_P^c, T_{QP}^u(x^u)),$$

$$^{1}\dim(T_{Y_P}W^s(\mathcal{O}_Q)) + \dim(T_{Y_P}W^u(\mathcal{O}_P)) = d - 2 = \dim(M) - 2.$$

where  $T_{QP}^s : \mathbb{R}^s \to \mathbb{R}^s$  is a linear contraction,  $T_{QP}^u : \mathbb{R}^u \to \mathbb{R}^u$  is a linear expansion and  $T_{QP}^c : \mathbb{R}^2 \to \mathbb{R}^2$  is either  $\pm \mathrm{Id}$  or the reflection  $E_{\mathbb{X}}$ . Note that here the maps  $f_t$  do not depend on t.

We say that A and B are the linear parts of the cycle, that  $X_Q$  and  $Y_P$  are the heteroclinic points, and  $T_{QP}$  and  $T_{PQ,t}$  are the transitions of the cycle.



Figure 2.1: Transitions of the cycle

We have the next result about the approximation of cycles by simple ones:

**Proposition 2.2.** Let f be a diffeomorphism with a heterodimensional cycle of co-index two associated with saddles P and Q which is central separated. Assume that the central eigenvalues satisfy

$$|\alpha_{s+1}| = |\alpha_{s+2}|$$
 and  $|\beta_{s+1}| = |\beta_{s+2}|$ 

Then any neighbourhood  $\mathcal{U}$  of f contains diffeomorphisms having simple cycles associated with P and Q which are unfolded in a simple way.

*Proof.* We start with some preparations and fix some notation. For simplicity let us assume that Q and P are fixed points of f. By a small perturbation of f we can assume that there are small neighbourhoods of P and Q, say  $\mathcal{U}_P$  and  $\mathcal{U}_Q$ , where f is linear.

Consider  $W^{uu}(Q)$  the strong unstable manifold of Q (the unique f-invariant manifold tangent to  $E_Q^{uu}$ ). Using local coordinates around Q define the following local manifolds of Q

$$W_{loc}^{s}(Q) \stackrel{\text{def}}{=} \{(x^{s}, 0^{c}, 0^{u})\} \subset W^{s}(Q) \cap \mathcal{U}_{Q},$$

$$W_{loc}^{u}(Q) \stackrel{\text{def}}{=} \{(0^{s}, x^{c}, x^{u})\} \subset W^{u}(Q) \cap \mathcal{U}_{Q},$$

$$W_{loc}^{cu}(Q) \stackrel{\text{def}}{=} \{(0^{s}, x^{c}, 0^{u})\} \subset W^{u}(Q) \cap \mathcal{U}_{Q}, \quad \text{and}$$

$$W_{loc}^{uu}(Q) \stackrel{\text{def}}{=} \{(0^{s}, 0^{2}, x^{u})\} \subset W^{uu}(Q) \cap \mathcal{U}_{Q}.$$

Similarly, let  $W^{ss}(P)$  be the strong stable manifold of P (the unique f-invariant manifold tangent to  $E_P^{ss}$ ), using local coordinates we define the following local

manifolds of P

$$W_{loc}^{u}(P) \stackrel{\text{def}}{=} \{(0^{s}, 0^{c}, x^{u})\} \subset W^{u}(P) \cap \mathcal{U}_{P},$$

$$W_{loc}^{s}(P) \stackrel{\text{def}}{=} \{(x^{s}, x^{c}, 0^{u})\} \subset W^{s}(P) \cap \mathcal{U}_{P},$$

$$W_{loc}^{cs}(P) \stackrel{\text{def}}{=} \{(0^{s}, x^{c}, 0^{u})\} \subset W^{s}(P) \cap \mathcal{U}_{P}, \quad \text{and}$$

$$W_{loc}^{ss}(P) \stackrel{\text{def}}{=} \{(x^{s}, 0^{2}, 0^{u})\} \subset W^{ss}(P) \cap \mathcal{U}_{P}.$$

We now choose heteroclinic points of the cycle. Take heteroclinic points  $X \in W^u(Q) \cap W^s(P)$  and  $Y \in W^s(Q) \cap W^u(P)$ . After an arbitrarily small perturbation of f, we can assume that the first intersection is transverse and the second one quasi-transverse. Moreover, we can also suppose that  $X \notin W^{uu}(Q)$  and  $X \notin W^{ss}(P)$ . Replacing X by some negative iterate we can assume that  $X \in W^u_{loc}(Q)$ . Write  $X = (0^s, x^c, x^u)$  and  $f^{-n}(X) = (0^s, x^c_n, x^u_n)$ . Since  $X \notin W^{uu}(Q)$  we have  $x^c \neq 0^2$  and

$$\frac{||x_n^u||}{||x_n^c||} \le \frac{|\beta_{s+3}|^{-n}}{|\beta_{s+1}|^{-n}} \cdot \frac{||x^u||}{||x^c||}.$$

As  $|\beta_{s+3}| > |\beta_{s+1}|$  this implies that  $f^{-n}(X)$  is much closer to  $W_{loc}^{cu}(Q)$  than to  $W_{loc}^{uu}(Q)$  for a sufficiently big n. Analogously, replacing X by some positive iterate we can assume that  $X \in W_{loc}^s(P)$  and since  $|\alpha_s| < |\alpha_{s+2}|$  we have that  $f^m(X)$  is much closer to  $W_{loc}^{cs}(P)$  than  $W_{loc}^{ss}(P)$  for a sufficiently big m. Thus after arbitrarily small perturbations we can assume that there are backward iterate  $\bar{X}_Q$  of X that is in  $W_{loc}^{cu}(Q)$ , and forward iterate  $\bar{X}_P$  of X that is in  $W_{loc}^{cs}(P)$ . The points  $\bar{X}_Q$  and  $\bar{X}_P$  are depicted in Figure 2.2.



Figure 2.2: The heteroclinic points  $\bar{X}_Q$  and  $\bar{X}_P$ 

Now take a quasi-transverse heteroclinic point  $Y \in W^s(Q) \cap W^u(P)$  and we fix iterates (backward)  $\bar{Y}_P$  and (forward)  $\bar{Y}_Q$  of it such that  $\bar{Y}_P \in W^u_{loc}(P)$  and  $\bar{Y}_Q \in W^s_{loc}(Q)$ .

Claim 2.3. After an arbitrarily small perturbation of f, we can assume that there are large  $r_0, \ell_0 > 0$ , negative iterates  $\tilde{X}_Q$  of  $\bar{X}_Q$  and  $\tilde{Y}_P$  of  $\bar{Y}_P$ , and small neighborhoods  $\mathcal{U}_{\tilde{X}_Q}$  of  $\tilde{X}_Q$  and  $\mathcal{U}_{\tilde{Y}_P}$  of  $\tilde{Y}_P$  such that the restrictions of  $f^{r_0}$  to  $\mathcal{U}_{\tilde{X}_Q}$  and of  $f^{\ell_0}$  to  $\mathcal{U}_{\tilde{Y}_P}$  are linear maps preserving the splitting  $E^{ss} \oplus E^c \oplus E^{uu}$ .

Proof. In the neighborhood  $\mathcal{U}_Q$  of Q there are f-invariant foliations  $\mathcal{F}_Q^u$ ,  $\mathcal{F}_Q^{uu}$ ,  $\mathcal{F}_Q^c$ ,  $\mathcal{F}_Q^{ss}$  and  $\mathcal{F}_Q^s$  that are tangent to the bundles  $E^{uu} \oplus E^c$ ,  $E^{uu}$ ,  $E^c$ ,  $E^{ss}$  and  $E^c \oplus E^{ss}$ , respectively. Using the linearizing coordinates of f in  $\mathcal{U}_Q \simeq [-1, 1]^d$  we consider the following locally f-invariant foliations:

- $\mathcal{F}_Q^u$  the foliation by (u+2)-planes parallel to  $\{0^s\} \times [-1,1]^2 \times [-1,1]^u$ ,
- $\mathcal{F}_Q^{uu}$  the foliation by *u*-planes parallel to  $\{0^s\} \times \{0^2\} \times [-1,1]^u,$
- $\mathcal{F}_{Q}^{c}$  the foliation by 2-planes parallel to  $\{0^{s}\} \times [-1,1]^{2} \times \{0^{u}\},$
- $\mathcal{F}_Q^{ss}$  the foliation by s-planes parallel to  $[-1,1]^s \times \{0^2\} \times \{0^u\}$ ,
- $\mathcal{F}_Q^s$  the foliation by (s+2)-planes parallel to  $[-1,1]^s \times [-1,1]^2 \times \{0^u\}$ .

Analogously, in the neighborbood  $\mathcal{U}_P$  of P there are foliations  $\mathcal{F}_P^u$ ,  $\mathcal{F}_P^{uu}$ ,  $\mathcal{F}_P^c$ ,  $\mathcal{F}_P^{ss}$  and  $\mathcal{F}_P^s$  that are tangent to the bundles  $E^{uu} \oplus E^c$ ,  $E^{uu}$ ,  $E^c$ ,  $E^{ss}$  and  $E^c \oplus E^{ss}$ , respectively. As these foliations have the same local expression, for simplicity, let us omit the subscript P and Q and consider the foliations  $\mathcal{F}^u$ ,  $\mathcal{F}^{uu}$ ,  $\mathcal{F}^c$ ,  $\mathcal{F}^{ss}$  and  $\mathcal{F}^s$  defined on  $\mathcal{U}_Q \cup \mathcal{U}_P$  and denote by  $\mathcal{F}^\sigma(X)$  the leaf of  $\mathcal{F}^\sigma$  containing X, for  $\sigma = u$ , uu, c, ss, s.

By construction there is  $r_1 > 0$  such that  $f^{r_1}(\bar{X}_Q) = \bar{X}_P$ . Let us consider images of these foliations by  $f^{r_1}$ . After an arbitrarily small perturbation of f we can assume that the following transversality conditions hold:

$$f^{r_1}(\mathcal{F}^u(\bar{X}_Q)) \cap_{\bar{X}_P} E^{ss}.$$

Given a set A and a point  $X \in A$  denote by  $\mathcal{C}(A, X)$  the connected component of A containing X. By domination the images of the leaves of  $\mathcal{F}^u$  are close to the leaves in  $\mathcal{F}^u$  in  $\mathcal{U}_P$ . Replacing  $\bar{X}_P$  by some forward iterate of it, say  $f^{r_1+r_2}(\bar{X}_Q) = f^{r_2}(\bar{X}_P)$ , we can assume that after an arbitrarily small perturbation we have

$$\mathcal{C}\big(f^{r_1+r_1}(\mathcal{F}^u(\bar{X}_Q))\cap\mathcal{U}_P,f^{r_2}(\bar{X}_P)\big)=\mathcal{F}^u(f^{r_2}(\bar{X}_P)),$$

then we have the invariance of the foliation  $\mathcal{F}^u$ . Consider now negative iterates of the foliations in  $\mathcal{U}_P$  by  $f^{r_1+r_2}$ . Since the foliation  $\mathcal{F}^u$  is  $f^{r_1+r_2}$ -invariant, we have the following transversality:

$$f^{-(r_1+r_2)}\left(\mathcal{F}^{ss}(f^{r_2}(\bar{X}_P))\right) \pitchfork_{\bar{X}_Q} E^u.$$

By domination the backward iterates of the leaves of  $\mathcal{F}^{ss}$  are close to the leaves in  $\mathcal{F}^{ss}$  in  $\mathcal{U}_Q$ . Then replacing  $\bar{X}_Q$  by some backward iterate of it, say  $f^{-r_3}(\bar{X}_Q)$ ,

we can assume that after an arbitrarily small perturbation we have

$$\mathcal{C}(f^{-(r_1+r_2+r_3)}(\mathcal{F}^{ss}(f^{r_2}(\bar{X}_P)))\cap \mathcal{U}_Q, f^{-r_3}(\bar{X}_Q)) = \mathcal{F}^{ss}(f^{-r_3}(\bar{X}_Q)),$$

then we have the invariance of the foliations  $\mathcal{F}^{ss}$  and  $\mathcal{F}^{u}$ . Similarly, now we consider the image of the foliations in  $\mathcal{U}_{P}$  by  $f^{r_1+r_2+r_3}$ . After an arbitrarily small perturbation we can assume that:

$$f^{r_1+r_2+r_3}(\mathcal{F}^{uu}(f^{-r_3}(\bar{X}_Q))) \pitchfork_{\bar{X}_P} E^s.$$

By domination the images of the leaves of  $\mathcal{F}^{uu}$  are close to the leaves in  $\mathcal{F}^{uu}$  in  $\mathcal{U}_P$ . Replacing  $f^{r_2}(\bar{X}_P)$  by some forward iterate of it, say  $f^{r_2+r_4}(\bar{X}_P)$ , we can assume that after an arbitrarily small perturbation we have

$$\mathcal{C}(f^{r_1+r_2+r_3+r_4}(\mathcal{F}^{uu}(f^{-r_3}(\bar{X}_Q)))\cap \mathcal{U}_P, f^{r_2+r_4}(\bar{X}_P)) = \mathcal{F}^{uu}(f^{r_2+r_4}(\bar{X}_P)),$$

then we have the invariance of the foliations  $\mathcal{F}^{ss}$ ,  $\mathcal{F}^{u}$  and  $\mathcal{F}^{uu}$ . Following analogously we have that there are  $r_5$ ,  $r_6 > 0$  such that for  $f^{r_0}$ , where  $r_0 = r_1 + \cdots + r_6$ , we get the invariance of all foliations.

Consider the  $\tilde{X}_Q \stackrel{\text{def}}{=} f^{-(r_3+r_5)}(\bar{X}_Q)$  and  $\tilde{X}_P \stackrel{\text{def}}{=} f^{r_1+r_2+r_4+r_6}(\bar{X}_P)$ . This implies that (after a new arbitrarily small perturbation if necessary) there are small neighborhoods  $\mathcal{U}_{X_Q}$  of  $\tilde{X}_Q$  and  $\mathcal{U}_{X_P}$  of  $\tilde{X}_P$  such that  $f^{r_0}$  (or some positive iterate of it) preserves the foliations

$$f^{r_0}(\mathcal{F}^{\sigma}(Z)\cap\mathcal{U}_{X_O})=\mathcal{F}^{\sigma}(f^{r_0}(Z))\subset\mathcal{U}_{X_P},$$

for  $\sigma = u, uu, c, ss, s$ , and the restriction of  $f^{r_0}$  to  $\mathcal{U}_{X_Q}$  is linear.

Arguing analogously, we get  $\ell_0$ ,  $\tilde{Y}_P$  and an small neighborhood of  $\tilde{Y}_P$  such that  $f^{\ell_0}(\tilde{Y}_P) = \tilde{Y}_Q$ , the local foliations are  $f^{\ell_0}$  invariant, and the restriction of  $f^{\ell_0}$  to  $\mathcal{U}_{Y_P}$  is linear. This completes the proof of the claim.

In the local coordinates in  $\mathcal{U}_Q$  and  $\mathcal{U}_P$ , write

$$\tilde{X}_Q = (0^s, \tilde{x}_Q^c, 0^u) \in \mathcal{U}_Q, \qquad \tilde{X}_P = f^{r_0}(\tilde{X}_Q) = (0^s, \tilde{x}_P^c, 0^u) \in \mathcal{U}_P,$$

$$\tilde{Y}_P = (0^s, 0^c, \tilde{y}_P^u) \in \mathcal{U}_P, \qquad \tilde{Y}_Q = f^{\ell_0}(\tilde{Y}_P) = (\tilde{y}_Q^s, 0^c, 0^u) \in \mathcal{U}_Q.$$

By the previous claim, in the local coordinates (around Q and P) the restriction of  $f^{r_0}$  to the neighborhood  $\mathcal{U}_{\tilde{X}_O}$  is of the form

$$f^{r_0}(x^s, x^c + \tilde{x}_Q^c, x^u) = (\tilde{T}_{QP}^s(x^s), \tilde{x}_P^c + \tilde{T}_{QP}^c(x^c), \tilde{T}_{QP}^u(x^u)),$$

where  $\tilde{T}^s_{QP}$  is a linear contraction,  $\tilde{T}^u_{QP}$  a linear expansion, and  $\tilde{T}^c_{QP}$  linear.

Similarly, the restriction of  $f^{\ell_0}$  to the neighborhood  $\mathcal{U}_{\tilde{Y}_P}$  is of the form

$$f^{\ell_0}(x^s, x^c, x^u + \tilde{y}_P^u) = (\tilde{T}_{PQ}^s(x^s) + \tilde{y}_Q^s, \tilde{T}_{PQ}^c(x^c), \tilde{T}_{PQ}^u(x^u)),$$

where  $\tilde{T}_{PQ}^s$  is a linear contraction,  $\tilde{T}_{PQ}^u$  a linear expansion, and  $\tilde{T}_{PQ}^c$  linear.

It remains to prove that (after a new perturbation and after replacing  $\tilde{X}_Q$  and  $\tilde{Y}_P$  by some backward iterates and  $\tilde{X}_P$  and  $\tilde{Y}_Q$  by some forward iterates) we have identities or reflections in the central coordinates.

We fix  $k_1$  and  $k_2 > 0$  (the choice of these numbers is explained below) and replace  $\tilde{X}_Q$  and  $\tilde{X}_P$ , by  $X_Q = f^{-k_1}(\tilde{X}_Q) = (0^s, x_Q^c, 0^u)$  and  $X_P = f^{k_2}(\tilde{X}_P) = (0^s, x_P^c, 0^u)$ . Let  $r \stackrel{\text{def}}{=} k_1 + r_0 + k_2$ , then the restriction of the map  $f^r$  to a small neighborhood of  $X_Q$  is of the form  $f^r(x^s, x^c + x_Q^c, x^u) = (\bar{x}^s, \bar{x}^c, \bar{x}^u)$ , where

$$\bar{x}^{s} = (A^{s})^{k_{2}} \circ \tilde{T}_{QP}^{s} \circ (B^{s})^{k_{1}}(x^{s}),$$

$$\bar{x}^{c} = x_{P}^{c} + (C_{\alpha})^{k_{2}} \circ \tilde{T}_{QP}^{c} \circ (C_{\beta})^{k_{1}}(x^{c}),$$

$$\bar{x}^{u} = (A^{u})^{k_{2}} \circ \tilde{T}_{QP}^{u} \circ (B^{u})^{k_{1}}(x^{u}).$$
(2.2)

Clearly, the action of this map in the s-coordinate is a linear contraction and its action in the u-coordinate is a linear expansion. Therefore we consider

$$T_{QP}^s = (A^s)^{k_2} \circ \tilde{T}_{QP}^s \circ (B^s)^{k_1}$$
 and  $T_{QP}^u = (A^u)^{k_2} \circ \tilde{T}_{QP}^u \circ (B^u)^{k_1}$ .

It remains to check that, for appropriate choices of large  $k_1$  and  $k_2$  and after a small perturbation, the central part  $T_{QP}^c = (C_{\alpha})^{k_2} \circ \tilde{T}_{QP}^c \circ (C_{\beta})^{k_1}$  can be done as identity or reflection maps. Recall that  $|\alpha_{s+1}| = |\alpha_{s+2}| < 1$  and  $|\beta_{s+1}| = |\beta_{s+2}| > 1$  and also the notation

$$\alpha_{s+1} = \rho \, e^{2\pi \, i \, \phi}, \ \phi \in [0, 1), \ \rho < 1 \quad \text{and} \quad \beta_{s+1} = \varrho \, e^{2\pi \, i \, \varphi}, \ \varphi \in [0, 1), \ \varrho > 1.$$

We can assume, after a small perturbation, that  $\rho^n \varrho^m = 1$  for some large n and m. In particular,  $\rho^{nk} \varrho^{mk} = 1$  for all  $k \geq 1$ . We also can assume that  $\phi, \varphi \in \mathbb{Q}$ . In particular,  $(C_{\alpha})^{nj} = \rho^{nj} R_{n\phi}^j$ , and  $(C_{\beta})^{mj} = \varrho^{mj} R_{m\varphi}^j$ , where  $R_{\theta}$  denotes the rotation of angle  $\theta$ . As  $R_{n\phi}$  and  $R_{m\varphi}$  are rational rotation there is large k such that

$$R_{n\,\phi}^k = R_{m\,\varphi}^k = \mathrm{Id}.$$

Fix  $k_2 = n k$  and  $k_1 = m k$ , then  $(C_\alpha)^{k_2} = \rho^{n k} \operatorname{Id}$  and  $(C_\beta)^{k_1} = \rho^{m k} \operatorname{Id}$ . Thus

$$(C_{\alpha})^{k_2} \circ \tilde{T}^c_{QP} \circ (C_{\beta})^{k_1} = \rho^{n\,k} \, \varrho^{m\,k} \, \tilde{T}^c_{QP} = \tilde{T}^c_{QP}.$$

As the segment of orbit going from  $X_Q$  to  $X_P$  can be chosen arbitrarily large (it is enough to take large k) we can modify the action of f in the central direction (without modifying the other directions) along the orbit  $X_Q, f(X_Q), \ldots, f^r(X_Q) = X_P$  to transform  $\tilde{T}_{QP}^c$  in one of the maps  $\mathrm{Id}, -\mathrm{Id}, E_{\mathbb{X}},$  depending on the eigenvalues of the transition  $\tilde{T}_{QP}$ . This concludes the construction of the transition map  $T_{QP}$  (this map does not depend on t). The construction of the transition  $T_{PQ}$  for the diffeomorphism f with a cycle is done arguing exactly as above.

Finally, we consider an unfolding  $(f_t)_{t\in[-\epsilon,\epsilon]^2}$  of  $f=f_0$  as follows. Outside of a small neighborhood of  $f^{-1}(Y_Q)=f^{\ell-1}(Y_P)$  we consider  $f_t=f$  and we modify f in a neighborhood of  $f^{-1}(Y_Q)$  in such a way the map  $f_t^{\ell}$  is of the form

$$f_t^{\ell}(x^s, x^c, x^u) = \left(T_{PQ}^s(x^s), T_{PQ}^c(x^c) + t, T_{PQ}^u(x^u)\right).$$

This concludes the proof of the proposition.