$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: RISK AVERSE STOCHASTIC PROGRAMMING MODELS: PRACTICAL CONSEQUENCES OF THEORETICAL CONCEPTS
Autor: DAVI MICHEL VALLADAO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  ALVARO DE LIMA VEIGA FILHO - ADVISOR
ALEXANDRE STREET DE AGUIAR - CO-ADVISOR

Nº do Conteudo: 55936
Catalogação:  17/11/2021 Liberação: 17/11/2021 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55936&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55936&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.55936

Resumo:
This PhD Thesis is composed of four working papers, each one with a respective chapter on this thesis, with contributions on risk averse stochastic programming models. In particular, it focuses on analyzing the practical consequences of certain theoretical concepts of decision theory, finance and optimization. The first working paper analyzes the practical consequences and the economic interpretation of time consistent optimal policies, in particular for well known portfolio selection problem. The second paper has also a contribution to the portfolio selection literature. Indeed, we develop leverage optimal strategy considering a single-period debt with a piecewise linear borrowing cost function, which represents the actual situation faced by investors, and show a significant gap in comparison to the suboptimal solutions obtained by the usual linear approximation. Moreover, we develop a multistage extension where our cost function indirectly penalizes the excess of leverage, which is closely related to the contribution of the next working paper. The contribution of the third working paper is to penalize excess of leverage in a debt issuance multistage model that optimizes over several types of bonds with fixed or floating rate, different maturities and amortization patterns. For the sake of dealing with the curse of dimensionality of a long term problem, we divide the planning horizon into a detailed part at the beginning followed by a policy rule approximation for the remainder. Indeed, our approximation mitigates the end effects of a truncated model which is closely related to the contributions of the forth working paper. The forth paper develops a multistage model that seeks to obtain the optimal cash holding policy of a firm. The main contributions are a methodology to end effect treatment for a multistage model with infinite horizon and the development of a policy rule as approximation of the optimal solution.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF
CHAPTER 1  PDF
CHAPTER 2  PDF
CHAPTER 3  PDF
CHAPTER 6  PDF
CHAPTER 5  PDF
CHAPTER 6  PDF
REFERENCES  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui