
2
Time consistency and risk averse dynamic decision models:
Definition, interpretation and practical consequences

In a stochastic programming context, the Conditional Value at Risk

(CVaR) became one of the most widely used risk measures for three reasons:

first, it is a coherent risk measure (see (ARTZNER et al., 1999)); second, it has

a clear and suitable economic interpretation (see (ROCKAFELLAR; URYASEV,

2000) and (STREET, 2009)); and last, but not least, it can be written as a

linear stochastic programming model as shown in (ROCKAFELLAR; URYASEV,

2000). For these three reasons, the CVaR has been applied to static and

even to dynamic models. However, to choose a coherent risk measure as

objective function of a dynamic model is not a sufficient condition to obtain

suitable optimal policies. In the recent literature, time consistency is shown

to be one basic requirement to get suitable optimal decisions, in particular

for multistage stochastic programming models. Papers on time consistency

are actually divided in two different approaches: the first one focuses on risk

measures and the second one on optimal policies.

The first approach states that, in a dynamic setting, if some random

payoff A is always riskier than a payoff B conditioned to a given time t+1, than

A should be riskier than B conditioned to t. It is well known that this property

is achieved using a recursive setting, leading to so called time consistent

dynamic risk measures proposed by various authors, e.g., (Bion-Nadal, 2008;

DETLEFSEN; SCANDOLO, 2005; RIEDEL, 2004; CHERIDITO; DELBAEN; KUPPER,

2006; ROORDA; SCHUMACHER, 2007; KOVACEVIC; PFLUG, 2009). Other weaker

definitions, like acceptance and rejection consistency, are also developed in

these works (see (CHERIDITO; DELBAEN; KUPPER, 2006; KOVACEVIC; PFLUG,

2009) for details).

The second approach, formally defined by (SHAPIRO, 2009), is on time

consistency of optimal policies in multistage stochastic programming models.

The interpretation of this property given by the author is the following: “at

every state of the system, our optimal decisions should not depend on scenarios

which we already know cannot happen in the future”. This interpretation is

an indirect consequence of solving a sequence of problems whose objective

DBD
PUC-Rio - Certificação Digital Nº 0812736/CA
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functions can be written recursively as in the formerly cited time consistent

dynamic risk measures. It is shown in (SHAPIRO, 2009) for instance that if, for

every state of the system, we want to minimize the CVaR of a given quantity at

the end of the planning horizon, we would obtain a time inconsistent optimal

policy. Indeed, this sequence of problems does not have recursive objective

functions and the optimal decisions at particular future states might depend

on scenarios that “we already know cannot happen in the future”. However, if

for t = 0 we want to minimize the CVaR of a given quantity at the end of the

planning horizon and for t > 0 we actually follow the dynamic equations of

the first stage problem, then we obtain a time consistent optimal policy even

though it depends on those scenarios we already know cannot happen. On the

other hand, one can argue that this policy is not reasonable because for t > 0

the objective function has no economic interpretation.

In this paper, we use a direct interpretation for time consistency of

optimal policies based on its formal definition. We actually state that a policy

is time consistent if and only if the future planned decisions are actually going

to be implemented. In the literature, time inconsistent optimal policies have

been commonly proposed, in particular (BÄUERLE; MUNDT, 2009) at section

3 and 4.1 and (FÁBIÁN; VESZPRÉMI, 2008) have developed portfolio selection

models using CVaR in a time inconsistent way. In our work, we show with

a numerical example that a time inconsistent CVaR based portfolio selection

model can lead to a suboptimal sequence of implemented decisions and may not

take risk aversion into account at some intermediate states of the system. We

propose a time consistent alternative with a recursive objective function and

compare its optimal policy to the time inconsistent one. Other alternatives have

been proposed by (BODA; FILAR, 2006) and (CUOCO; HE; ISSAENKO, 2008),

however none of them used the recursive set up of time consistent dynamic

risk measures. Since the lack of a suitable economic interpretation for this

recursive set up is one of the main reasons why it is not commonly proposed,

we prove for a more general set of problems that this objective function is

the certainty equivalent w.r.t. the time consistent dynamic utility defined as

the composed form of one period preference functionals. We show that our

application fits into this general set of problems and develop the interpretation

for the numerical example.

2.0.1
Assumptions and notation

In this paper, we assume a multistage setting with a finite planning

horizon T . We consider a probability space (Ω,F ,P) with a related filtration
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F0 ⊆ . . . ⊆ FT , where F0 = {∅,Ω} and F = FT .

Since our application is on portfolio selection, we use a unique notation

for all models developed here. This section includes definition of sets, stochastic

processes, decision and state variables.

Let us define the set of assets, A = {1, . . . , A}, the set stages, H =

{0, . . . , T − 1}, and the set of stages starting from τ , H(τ) = {τ, . . . , T −
1}, ∀τ ∈ H. In addition, we define the excess return of asset i ∈ A, between
stages t ∈ {1, . . . , T} and t − 1, under scenario ω ∈ Ω, as the stochastic

process ri,t (ω) where we denote rt (ω) = (r1,t (ω) , . . . , rA,t (ω))
′
and, for s ≤ t,

r[s,t] (ω) = (rs (ω), . . . , rt (ω))
′
.

Let us also denote the state variable Wt (ω) to be the wealth at stage

t ∈ H ∪ {T} under scenario ω ∈ Ω and the decision variable xi,t (ω) to be the

amount invested in asset i ∈ A, at stage t ∈ H under scenario ω ∈ Ω where

xt (ω) = (x1,t (ω) , . . . , xA,t (ω))
′
and, for s ≤ t, x[s,t] (ω) = (xs (ω), . . . ,xt (ω))

′
.

Without loss of generality, we assume that there is a risk free asset,

indexed by i = 1, with null excess return for each state of the system, i.e.,

r1,t (ω) = 0, ∀t ∈ H ∪ {T}, ω ∈ Ω. Moreover, we assume that Wt, ri,t, xi,t ∈
L∞(Ft), ∀t ∈ H ∪ {T}.

Let W be a F measurable function and consider a realization sequence

r̄[1,t] = (r̄1, . . . , r̄t)
′
of the asset returns. Then, we denote the conditional and

unconditional expectations by E
[
W
∣∣ r̄[1,t]] = E

[
W
∣∣ r[1,t] = r̄[1,t]

]
and E [W ] ,

respectively.

We also use the negative of the CVaR developed by (ROCKAFELLAR;

URYASEV, 2000) as an “acceptability” measure (see (KOVACEVIC; PFLUG,

2009) for details) whose conditional and unconditional formulations are defined

respectively as

φα
t

(
W, r̄[1,t]

)
= −CV aRα

(
W
∣∣ r̄[1,t]) = sup

z∈R

{
z − E

[
(W − z)−

∣∣ r̄[1,t]]
1− α

}
(2-1)

and

φα
0 (W ) = −CV aRα (W ) = sup

z∈R

{
z − E

[
(W − z)−

]
1− α

}
,

where x− = −min(x, 0).

Note that, E
[· ∣∣ r̄[1,t]] ,E [·] , φα

t

(·, r̄[1,t]) and φα
t (·) are real valued functi-

ons, i.e, L∞ (Ω,F ,P) → R. It is also important to note that all constraints

represented in this paper are defined for almost every ω ∈ Ω, in the P

a.s. sense, that affects the objective function. For instance, if the objective

function of a particular optimization problem is a conditional expectation

E
[· ∣∣ r̄[1,t]], then the constraints of this problem are defined for almost every
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ω ∈ {ω̄ ∈ Ω
∣∣ r[1,t] (ω̄) = r̄[1,t]

}
.

2.1
Experimental

The major reason for developing dynamic (multistage) models instead

of static (two-stage) ones is the fact that we can incorporate the flexibility

of dynamic decisions to improve our objective function. In other words, the

possibility of changing a policy after the realization of some random variables

increases the objective function (for a maximization problem) and allows the

first stage decisions to be less conservative than their counterpart in the static

case. However, it doesn’t make any sense to incorporate this flexibility if the

intermediate decisions are not actually going to be implemented.

As we stated before, an optimal policy is time consistent if and only if the

future planned decisions are actually going to be implemented. Only under this

property we guarantee that the flexibility and optimality of a dynamic policy

will not be polluted by any spurious future planned decisions. Said so, one can

even argue that the first stage decisions of a time inconsistent policy are, for

practical reasons, suboptimal considering that the optimal policy would not

be followed in the future.

In a multistage stochastic programming context, a policy is a sequence of

decisions for each stage and for each scenario (a realization of the uncertainty).

As in (SHAPIRO, 2009), one has to define which (multistage) optimization

problem should be solved when the current time is a particular stage t ∈ H of

the planning horizon. Said that, when the current time is t = 0, we solve the

corresponding optimization problem and obtain the first stage optimal decision

and the future planned optimal policy. This policy is time consistent if and

only if these future planned decisions for each scenario are also optimal for

each problem when the current time is t > 0.

In order to motivate this discussion, we develop a CVaR based portfolio

selection model which incorporates the well known mean-risk trade-off presen-

ted by (MARKOWITZ, 1952). As a coherent risk measure, the CVaR should be

a suitable way to assess risk, however we want to point out the fact that if one

chooses a dynamic model, time consistency should also be take into account.

Assessing risk in a time inconsistent way may lead to a time inconsistent policy

and therefore to a suboptimal sequence of implemented decisions.

For an illustrative purpose, we apply the CVaR in a time inconsistent

way to the portfolio selection problem and show some practical consequences

of the related optimal policy.
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2.1.1
Example of a time inconsistent policy

The portfolio selection problem is normally formulated to consider the

mean-risk trade-off. Some models use the expected value as the objective

function with a risk constraint while others minimize risk with a constraint on

the expected value. In this paper, we combine these two approaches defining

our objective function as a convex combination of the expected value and the

acceptability measure previously stated. In other words, the investor wants to

maximize its expected return and also minimize risk, given his current state.

It is very important to note that the planning horizon is a fixed date in the

future and, depending on the investor’s current state, he / she solve a different

optimization problem.

Then, we define the problem Qτ

(
Wτ , r̄[1,τ ]

)
solved by the investor, given

his / her current stage τ and the current realization r̄[1,τ ] of the random process,

as
maximize

W[τ+1,T ],x[τ,T−1]

(1− λ)E
[
WT

∣∣ r̄[1,τ ]]+ λφα
τ

(
WT , r̄[1,τ ]

)
subject to Wt+1 =

∑
i∈A (1 + ri,t+1) xi,t, ∀ t ∈ H(τ)∑

i∈A xi,t = Wt, ∀ t ∈ H(τ)

xt ≥ 0,

where λ ∈ [0, 1].

Using (2-1), the problem can be equivalently formulated as

maximize
W[τ+1,T ],x[τ,T−1],z

E

[
(1− λ)WT + λ

(
z − (WT − z)−

1− α

) ∣∣∣∣ r̄[1,τ ]]
subject to Wt+1 =

∑
i∈A (1 + ri,t+1) xi,t, ∀ t ∈ H(τ)∑

i∈A xi,t = Wt, ∀ t ∈ H(τ)

xt ≥ 0.

Note that, the first stage problem Q0 (W0) is defined equivalently as

follows:

maximize
W[1,T ],x[0,T−1],z

E

[
(1− λ)WT + λ

(
z − (WT − z)−

1− α

)]
subject to Wt+1 =

∑
i∈A (1 + ri,t+1) xi,t, ∀ t ∈ H(τ)∑

i∈A xi,t = Wt, ∀ t ∈ H(τ)

xt ≥ 0.

(2-2)

In order to have a numerical example, Let us assume our probability
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Figura 2.1: Return tree for i = 2

space to be represented by a discrete event tree. For instance, consider T = 2

and the tree represented in Figure 2.1, where the scenarios ω ∈ Ω = {1, 2, 3, 4}
are numbered by the terminal nodes. In our notation, a node is a subset of

Ω, e.g., the root node is defined as Ω = {1, 2, 3, 4}, the intermediate nodes

as {1, 2} and {3, 4} and the terminal nodes as {1}, {2}, {3}, {4}. Now, let us
denote Nt the set of nodes at stage t and Ft the σ-algebra generated by it. In

our example, N1 = {Ω}, N2 = {{1, 2}, {3, 4}} and N3 = {{1}, {2}, {3}, {4}}.
For sake of simplicity, we consider a two-asset model, i.e., A = {1, 2},

and a probability measure defined as P (ω) = 0.25, ∀ω ∈ Ω = {1, 2, 3, 4}. The
first asset indexed by i = 1 is risk free and it has null excess return for every

state of the system, i.e, r1,t(ω) = 0, ∀t ∈ {1, 2}, ω ∈ Ω. The second one is

assumed to have iid returns given by

r2,t (ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, for t = 1, ω ∈ {1, 2}
−0.5, for t = 1, ω ∈ {3, 4}

1, for t = 2, ω ∈ {1}
−0.5, for t = 2, ω ∈ {2}

1, for t = 2, ω ∈ {3}
−0.5, for t = 2, ω ∈ {4}.

and graphically represented in Figure 2.1. It is straightforward to see that the

risky asset has greater expected return and higher risk than the risk free one.

This represents the mean-risk trade-off of a typical portfolio selection problem.

Now, we write an equivalent deterministic linear programming model for
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the problem Q0 (W0) defined in (2-2) assuming, without loss of generality, that

W0 = 1. Then we have the following:

maximize
q,W[1,2],x[0,1],z

1

4

4∑
ω=1

[
(1− λ)W2 (ω) + λ

(
z − q (ω)

1− α

)]
subject to Wt+1 (ω) =

∑
i∈A (1 + ri,t+1 (ω)) xi,t (ω), ∀ t ∈ H, ω ∈ Ω∑

i∈A xi,t (ω) = Wt (ω) , ∀ t ∈ H, ω ∈ Ω

xt(ω) ≥ 0, ∀t ∈ H, ω ∈ Ω

q(ω) ≥ z −W2 (ω) , ∀ω ∈ Ω

q(ω) ≥ 0, ∀ω ∈ Ω.

(2-3)
where xt is Ft-adapted, i.e., x0(1) = x0(2) = x0(3) = x0(4), x1(1) = x1(2) and

x1(3) = x1(4), which are the well known non-antecipativity constraints. Note

that q is a FT -adapted auxiliar variable to represent the CVaR as developed

in (ROCKAFELLAR; URYASEV, 2000).

Solving this problem for α = 95% and λ = 0.5, we have the following

optimal solution:

x∗
1,t (ω) =

⎧⎪⎨⎪⎩
0.5, for t = 0, ω ∈ Ω

0, ∀t = 1, ω ∈ {1, 2}
0.75, ∀t = 1, ω ∈ {3, 4},

x∗
2,t (ω) =

⎧⎪⎨⎪⎩
0.5, for t = 0, ω ∈ Ω

1.5, ∀t = 1, ω ∈ {1, 2}
0, ∀t = 1, ω ∈ {3, 4}.

(2-4)

At the root node, it is optimal to split evenly the investment, while

at node {1, 2} everything is invested in the risky asset and at node {3,4}
everything is invested in the risk free one.

Now, let us suppose one period has passed and the current state is at time

τ = 1 and at node {1, 2}. Let us write an equivalent deterministic problem for

Q1(W1, r̄1), for W1 = 1.5 and r̄1 = (0, 1)
′
as
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maximize
q,W2,x1,z

1

2

2∑
ω=1

[
(1− λ)W2 (ω) + λ

(
z − q (ω)

1− α

)]
subject to W2 (ω) =

∑
i∈A (1 + ri,2 (ω)) xi,1, ∀ω ∈ {1, 2}∑

i∈A xi,1 = W1

x1 ≥ 0

q (ω) ≥ z −WT (ω) , ∀ω ∈ {1, 2}
q (ω) ≥ 0, ∀ω ∈ {1, 2}.

(2-5)

This problem reflects what the investor would do at τ = 1 and at node {1, 2} if
the optimal decision x∗

0 in (2-4) had been implemented. In other words, given

x∗
1,t and x∗

2,t for t = 0, the optimal solution of (2-5) is the decision implemented

at τ = 1 and at node {1, 2} of an agent that maximizes the chosen acceptability

measure of terminal wealth.

We want to show that the optimal solutions for this problem at node

{1, 2} are different from the ones in (2-4), meaning that at t = 0 the future

planned decisions for t = 1 are different from the ones that are actually going

to be implemented. It is also important to understand why it happens and

what kind of error a investor would do with this time inconsistent policy. The

optimal solution of (2-5) is given by the following:

x̃∗
1,t (ω) = 1.5, ∀t = 1, ω ∈ {1, 2},

x̃∗
2,t (ω) = 0, ∀t = 1, ω ∈ {1, 2}.

(2-6)

The optimal planned strategy at node {1, 2} obtained by solving (2-3) is

to invest everything in the risky asset, while the solution of problem (2-5) (the

one that is actually going to be implemented) is to invest everything in the

risk free asset (see equation (2-6)). This happens because, in problem (2-3),

the CV aR95% is the worst case loss at scenario ω = 4 given by −W2(4). Then,

at node {1, 2}, it is optimal for first stage problem to choose the investment

strategy with the highest expected return since this decision will not affect the

terminal wealth at scenario ω = 4.

This example points out that a time inconsistent policy may lead to a

sequence of optimal decisions where a risk-averse decision maker shows a risk

neutral preference at some intermediate state. In other words, risk aversion may

not be taken into account at some intermediate states of the system. Therefore,

we propose a time consistent alternative that has significant advantages over

the time inconsistent one since it incorporates the flexibility of a dynamic

decision model ensuring that the future planned decisions are actually going
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to be implemented.

2.1.2
Time consistent alternative

In this section, we propose an alternative to the previous time incon-

sistent policy. We base our formulation on (RUSZCZYNSKI; SHAPIRO, 2006)

and develop dynamic equations. For t = T − 1, we define the problem

VT−1 (WT−1, r̄T−1) as follows:

maximize
WT ,xT−1

(1− λ)E
[
WT

∣∣ r̄[1,T−1]

]
+ λφα

T−1

(
WT , r̄[1,T−1]

)
subject to WT =

∑
i∈A (1 + ri,T ) xi,T−1∑

i∈A xi,T−1 = WT−1

xT−1 ≥ 0.

Using the definition of φα
T−1

(
W, r̄[1,T−1]

)
given in (2-1), we rewrite the

problem as follows:

maximize
WT ,xT−1,z

E

[
(1− λ)WT + λ

(
z − (WT − z)−

1− α

) ∣∣∣∣ r̄[1,T−1]

]
subject to WT =

∑
i∈A (1 + ri,T ) xi,T−1∑

i∈A xi,T−1 = WT−1

xT−1 ≥ 0.

For the last period, our proposed model is to maximize the convex

combination of the expected terminal wealth and the acceptability measure

φα
T−1

(
W, r̄[1,T−1]

)
. Now, for t < T − 1, we propose a nested value function,

based on the conditional version of the same convex combination. Then,

Vt

(
Wt, r̄[1,t]

)
, ∀t = 0, . . . , T − 2, is defined as follows:

maximize
Wt+1,xt

(1− λ)E
[
Vt+1

∣∣ r̄[1,t]]+ λφα
t

(
Vt+1, r̄[1,t]

)
subject to Wt+1 =

∑
i∈A (1 + ri,t+1) xi,t∑

i∈A xi,t = Wt

xt ≥ 0.

(2-7)

where Vt+1 stands for Vt+1

(
Wt+1, r[1,t+1]

)
.

Equivalently to t = T − 1, we rewrite problem (2-7) as follows:
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maximize
Wt+1,xt,z

E

[
(1− λ)Vt+1 + λ

(
z − (Vt+1 − z)−

1− α

) ∣∣∣∣ r̄[1,t]]
subject to Wt+1 =

∑
i∈A (1 + ri,t+1) xi,t∑

i∈A xi,t = Wt

xt ≥ 0.

(2-8)

For comparison purposes, we solve this model for the numerical example

proposed in section 2.1.1. To do so, we use the result shown in (BLOMVALL;

SHAPIRO, 2006) that, for stage-wise independent returns such problem has a

myopic optimal policy which is obtained as the solution of the following two-

stage problem for t ∈ H:

maximize
Wt+1,xt,z

E

[
(1− λ)Wt+1 + λ

(
z − (Wt+1 − z)−

1− α

)]
subject to Wt+1 =

∑
i∈A (1 + ri,t+1) xi,t∑

i∈A xi,t = Wt

xt ≥ 0.

(2-9)

For W0 = 1, the (time consistent) optimal policy obtained by solving

problem (2-8) is the following:

x∗
1,t (ω) = Wt = 1, ∀t ∈ H, ω ∈ Ω,

x∗
2,t (ω) = 0, ∀t ∈ H, ω ∈ Ω.

The optimal policy is always to invest the total wealth in the risk free

asset. Note that this strategy is more conservative compared to the time

inconsistent one, because it takes risk into account at every state of the system.

Since this difference may lead to a sub-optimal solution, we develop in the

following section a systematic way of measuring this effect on the objective

function.

2.1.3
The time inconsistent sub-optimality gap

In section 2.1.1, we show a time inconsistent example where planned

and implemented policies are different. However, what we do want to know

is how a time inconsistent policy impacts our objective function. The way of

measuring it is computing the sub-optimality gap that concerns the disparity

of the objective function we expect to obtain with our planning policy, denoted

by OFplan, and the one we actually get when evaluating the policy to be
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implemented in the future, denoted by OFimp. Then, let us define

gap =
OFplan −OFimp

OFplan

,

For instance, take the portfolio selection problem defined in (2-2), in

particular the numerical example in (2-3). The optimal value Q0(W0) defines

OFplan, i.e.,

OFplan = Q0(W0).

On the other hand, OFimp is obtained by computing the wealth distribution

ŴT at t = T using the implemented decisions and then evaluate the objective

function

OFimp = E

⎡⎢⎣(1− λ) ŴT + λ

⎛⎜⎝z −
(
ŴT − z

)−
1− α

⎞⎟⎠
⎤⎥⎦ ,

The terminal wealth ŴT is obtained by the following procedure:

for τ ∈ H, ω ∈ Ω: do

x̂τ = (x̂1,τ , . . . , x̂A,τ )
′ ← the first stage solution of Qτ

(
Ŵτ (ω), r̄[1,τ ](ω)

)
Compute Ŵτ+1(ω) =

∑
i∈A (1 + ri,T (ω)) x̂i,T−1

end for

where, for τ = 0, Ŵτ (ω) = W0 and Qτ

(
Ŵτ (ω), r̄[1,τ ](ω)

)
= Q0(W0), ∀ω ∈ Ω.

In this numerical example where λ = 0.5 and T = 2 we compute

a gap of 9.09%. For completeness, we run a sensitivity analysis varying

λ ∈ {0, 0.1, . . . , 0.9, 1} and T ∈ {2, 3, . . . , 9, 10}, where the results are presented
in Table 2.1. From this results we have a better assessment on how a time

inconsistent policy would affect the decision process in practice.

We observe that gap can be significantly different depending on planning

horizon size T and risk aversion level λ. On the one hand, we observe a zero

gap for λ ∈ {0, 1} and for all T ∈ {2, . . . , 10}. For λ = 0 our results are

validated by the fact that a risk neutral formulation ensures time consistency.

For λ = 1, the preference function is too conservative in this particular example

and, therefore, planned and implemented decisions are to invest everything in

the risk free asset. On the other hand, for λ ∈ {0.4, 0.5, 0.6, 0.7, 0.9} we observe
significantly high gap values for different planning horizon sizes T . We illustrate

this behavior in Figure 2.2 where we plot for each λ, the gap as a function of T .

For a given λ, we observe that sub-optimality gap increases with the planning

horizon until it stabilizes around a certain value. Nonetheless the gap for a

smaller λ increases faster with T , the case with a larger λ stabilizes at a higher

gap value.
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Figura 2.2: Sub-Optimality gap due to Time Inconsistency

To sum up, for the most aggressive and the most conservative allocation

strategies, time inconsistency would not be a problem. On the other hand, for

0 < λ < 1, time consistency do matter and can have a significant impact on

the objective function. For this reason, we reassure the importance of time

consistency which can be achieved by the recursive formulation illustrated in

Section 2.1.2. The major problem of utilizing this formulation in practice is

the difficulty to economically interpret it. Therefore, we develop a suitable

economic interpretation for this recursive objective function based on certain

equivalent of the related preference function.

2.2
Results and discussion

The problem of choosing the proposed recursive set up is usually the

lack of a suitable economic interpretation for the objective function. How can

a investor choose a policy if he / she does not know what is actually going

to be optimized? For this reason, we prove that the objective function is the

certainty equivalent w.r.t. the time consistent dynamic utility generated by

one period preference functionals.

Let us consider a generic one period preference functional ψt :

L∞ (Ft+1) → L∞ (Ft) and, for a particular realization sequence of the un-

certainty r̄[1,t], the related real valued function ψt

(· | r̄[1,t]) : L∞(Ft+1) → R.

Moreover, let us define important properties and concepts of ψt

(· | r̄[1,t]) used
to develop our main results:
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Translation invariance: ψt

(
Wt+1 +m | r̄[1,t]

)
= ψt

(
Wt+1 | r̄[1,t]

)
+m, where

Wt+1 ∈ L∞(Ft+1) and m ∈ R.

Monotonicity: ψt

(
XT | r̄[1,t]

) ≥ ψt

(
YT | r̄[1,t]

)
for all XT , YT ∈ L∞(FT ), such

that XT (ω) ≥ YT (ω), ∀ω ∈ Ω.

Normalization: Let us also assume that ψt

(· | r̄[1,t]) is normalized to zero,

i.e., ψt

(
0 | r̄[1,t]

)
= 0.

Definição 2.1 The certainty equivalent C̃t(Wt+1 | r̄[1,t]) of Wt+1 ∈ L∞(Ft+1)

with respect to ψt

(
Wt+1 | r̄[1,t]

)
is a real value m ∈ R such that ψt

(
m | r̄[1,t]

)
=

ψt

(
Wt+1 | r̄[1,t]

)
.

Let us also denote (Ut)t∈H as the time consistent dynamic utility function

generated by ψt (see (CHERIDITO; KUPPER, 2009) for details). Formally

speaking, Ut : L
∞ (FT )→ L∞ (Ft) is defined as follows:

UT (WT ) = WT and Ut (WT ) = ψt (Ut+1 (WT )) , ∀t ∈ H,

where WT ∈ L∞ (FT ). Note that we can also use a conditional version of Ut as

follows:

Ut

(
WT

∣∣ r̄[1,t]) = ψt

(
Ut+1 (WT )

∣∣ r̄[1,t]) , ∀t ∈ H.

The concept of certainty equivalent is also developed for the time

consistent dynamic utility Ut:

Definição 2.2 The certainty equivalent Ct(WT | r̄[1,t]) of WT ∈ L∞(FT ) with

respect to Ut

(
WT | r̄[1,t]

)
is a real value m ∈ R such that Ut

(
m | r̄[1,t]

)
=

Ut

(
WT | r̄[1,t]

)
.

Now, let us define the following dynamic stochastic programming model

where the value function at time t depends on the decisions at t − 1 and the

realization sequence of the uncertainty until t. Thus, for t = T we define it as

follows:

VT

(
xT−1, r̄[1,T ]

)
= WT

(
xT−1, r̄[1,T ]

)
,

where WT = WT

(
xT−1, r̄[1,T ]

)
is a real valued function.

For t ∈ H, we define the following:

Vt

(
xt−1, r̄[1,t]

)
= sup

xt∈Xt

ψt

(Vt+1

(
xt, r[1,t+1]

) ∣∣ r̄[1,t]),
where Xt = Xt

(
xt−1, r̄[1,t]

)
is the feasible set for each time t. Note that for

t = 0, we have

V0 = sup
x0∈X0

ψ0 (V1 (x0, r1)),
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where X0 is a deterministic set.

Then, we develop the following results.

Proposição 2.3 If ψt is a translation invariant, monotone functional norma-

lized to zero, then for t ∈ H the value function can be written as

Vt

(
xt−1, r̄[1,t]

)
= sup

xτ∈Xτ , ∀τ=t,...,T−1
Ct

(
WT

∣∣ r̄[1,t]),
where Ct

(
WT

∣∣ r̄[1,t]) is the certainty equivalent of WT w.r.t. Ut conditioned on

the realization sequence r̄[1,t].

Prova.

By definition we have

Vt

(
xt−1, r̄[1,t]

)
= sup

xt∈Xt

ψt

(Vt+1

(
xt, r[1,t+1]

) ∣∣ r̄[1,t])
= sup

xt∈Xt

ψt

(
. . . sup

xT−1∈XT−1

ψT−1 (WT )

∣∣∣∣∣ r̄[1,t]
)
.

Using the monotonicity of ψt and the definition of Ut we have the

following:

Vt

(
xt−1, r̄[1,t]

)
= sup

xτ∈Xτ ,∀τ=t,...,T−1
ψt

(
. . . ψT−1 (WT )

∣∣ r̄[1,t]) (2-10)

= sup
xτ∈Xτ ,∀τ=t,...,T−1

Ut

(
WT

∣∣ r̄[1,t]).
By the certainty equivalent definition, we have that Ct

(
WT | r̄[1,t]

)
sa-

tisfies Ut

(
Ct

(
WT | r̄[1,t]

) | r̄[1,t]) = Ut

(
WT | r̄[1,t]

)
. It is easy to show that

Ut

(· | r̄[1,t]) is translation invariant and normalized to zero, since its generators

ψt have the same properties. Then, Ut

(
Ct

(
WT | r̄[1,t]

) | r̄[1,t]) = Ct

(
WT | r̄[1,t]

)
and consequently, Ut

(
WT | r̄[1,t]

)
= Ct

(
WT | r̄[1,t]

)
.

Finally we have that

Vt

(
xt−1, r̄[1,t]

)
= sup

xτ∈Xτ , ∀τ=t,...,T−1
Ct

(
WT

∣∣ r̄[1,t]).
�

Corolário 2.4 If ψt is a translation invariant, monotone functional normali-

zed to zero, then for t ∈ H the value function can be written as

Vt

(
xt−1, r̄[1,t]

)
= sup

xτ∈Xτ , ∀τ=t,...,T−1
C̃t

(
. . . C̃T−1 (WT )

∣∣∣ r̄[1,t]),
where C̃t and C̃t(· | r̄[1,t]) are the certainty equivalent w.r.t. ψt and ψt(· | r̄[1,t]),
respectively.
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Prova. By the certainty equivalent definition we have that C̃t

(· | r̄[1,t]) satisfies
ψt

(
Ct

(· | r̄[1,t]) | r̄[1,t]) = ψt

(· | r̄[1,t]) and using the assumption that ψt is

translation invariant and normalized to zero, we have ψt = C̃t. Note that

this property also holds true for the conditional version. Then, from equation

(2-10) we have the following:

Vt

(
xt−1, r̄[1,t]

)
= sup

xτ∈Xτ ,∀τ=t,...,T−1
ψt

(
. . . ψT−1 (WT )

∣∣ r̄[1,t])
= sup

xτ∈Xτ ,∀τ=t,...,T−1
C̃t

(
. . . C̃T−1 (WT )

∣∣∣ r̄[1,t]).
�

Note that we could also include intermediate “costs” as in (RUSZCZYNSKI;

SHAPIRO, 2006) and our results would still hold true for a more general set of

problems. It is worth mentioning that we define the feasible sets, Xt, ∀t ∈ H,

and the terminal wealth function, WT

(
xT−1, r[1,T ]

)
generically depending on

the application. For the portfolio selection problem, we define them to fit the

original constraints. Then, we have that

Xt

(
xt−1, r̄[1,t]

)
=
{
xt ∈ R

A :
∑

i∈A xi,t =
∑

i∈A (1 + r̄i,t) xi,t−1

}
,

X0 =
{
x0 ∈ R

A :
∑

i∈A xi,0 = W0

}
,

WT (xT−1, r̄[1,T ]) =
∑

i∈A (1 + r̄i,T ) xi,T−1.

For the proposed portfolio selection model, we define our one period

translation invariant, monotone and normalized utility functional ψt as the

convex combination of the expected value and the CVaR based acceptability

measure, formally defined as

ψt (Vt+1) = (1− λ)E
[Vt+1 | r[1,t]

]
+ λφα

t

(Vt+1, r[1,t]
)
,

which is again a coherent acceptability measure. As before, Vt+1 ∈ L∞ (Ft+1)

and we can write the conditional version as the real valued function

ψt

(Vt+1

∣∣ r̄[1,t]) = (1− λ)E
[Vt+1

∣∣ r̄[1,t]]+ λφα
t

(Vt+1, r̄[1,t]
)
.

The objective function of the proposed model at t is the certainty

equivalent w.r.t. the time consistent dynamic utility function generated by the

one period preference functional of the investor. This recursive formulation

ensures time consistent optimal policies and it is also motivated by Corollary

2.4. The objective at t = T −1 is to maximize the certainty equivalent (CE) of
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Figura 2.3: Conditional certainty equivalents

terminal wealth w.r.t. the one period preference functional ψT−1. Indeed, we

can interpret the optimal CE as the portfolio value since it is the deterministic

amount of money the investor would accept instead of the (random) terminal

wealth obtained by his / her optimal trading strategy. At t = T − 2, . . . , 0,

the preference functional ψt is applied to the (random) portfolio value whose

realizations are given by all possible optimal CE’s at t+1. Thus, the problem

at time t is to maximize the CE of the portfolio value w.r.t. the one period

preference functional ψt of the investor.

For instance, in our numerical example the (random) portfolio value at

t = 1 is given by the realizations v1 and v2 in Figure 2.3 obtained by solving

problem (2-9) for nodes {1, 2} and {3, 4}, respectively. The portfolio value v0

(see also Figure 2.3) obtained by solving (2-9) for t = 0 is the optimal certainty

equivalent of the (random) portfolio value at t = 1.
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