Título: | UNCERTAINTY PROPAGATION USING POLYNOMIAL CHAOS EXPANSION IN OIL RESERVOIR MODELS | |||||||
Autor: |
KAREN GUEVARA RAMOS |
|||||||
Colaborador(es): |
MARCO AURELIO CAVALCANTI PACHECO - Orientador |
|||||||
Catalogação: | 17/NOV/2021 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55951&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55951&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.55951 | |||||||
Resumo: | ||||||||
In this work we investigate the reduction of the computational cost of the calculus of statistical moments of simulator s output in uncertainties propagation s models. For do that, we present an alternative s
implementation to the traditional Monte Carlo s Method, called Polynomial Chaos; that is adequate to problems where the number of uncertain variables is not so high. In the Polynomial Chaos method, the expectation and the variance of the simulator s output are directly estimated, as functions of the
probability distribuition of the uncertain variables in simulator input. The great advantage of Polynomial Chaos is that number of points necessary for a good estimation of the output statistics have smaller magnitude, compared to the Monte Carlo Method. Applications of Polynomial Chaos on oil reservoir simulations will be presented. As it is just a preliminar implementation, we just treat propagation s problems with at most four uncertainties variables, despite of the method being applicable to problems with more dimensions. Our main results are applied to two models of synthetic oil reservoirs.
|
||||||||