Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: APPROXIMATIONS OF REAL NUMBERS BY RATIONAL NUMBERS: WHY THE CONTINUED FRACTIONS CONVERGING PROVIDE THE BEST APPROXIMATIONS?
Autor: MARCELO NASCIMENTO LORIO
Colaborador(es): MARCOS CRAIZER - Orientador
Catalogação: 03/FEV/2015 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=23981&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=23981&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.23981
Resumo:
Continued fractions are representations of real numbers that are independent of the choice of the numerical basis. The choice of basis ten frequently hides more than shows efficient approximations of real numbers by rational ones. Integrating approximations of real numbers by continued fractions with geometrical interpretations clarify the subject. The study of geometrical aspects of Euclids algorithm, for example, is a powerful method for the visualization of continued fractions approximations. Theorems of Dirichlet, Hurwitz-Markov and Lagrange show that, definitely, the best approximations of real numbers come from continued fractions, and the errors are estimated with elegant mathematical technique.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LIST OF FIGURES PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
CHAPTER 8 PDF    
CHAPTER 9 PDF    
CHAPTER 10 PDF    
REFERENCES PDF