Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SURFACE DIFFEOMORPHISMS WITH NON-TRIVIAL INVARIANT MEASURES
Autor: ANDRE RUBENS FRANCA CARNEIRO
Colaborador(es): JULIO CESAR DE SOUZA REBELO - Orientador
Catalogação: 07/OUT/2008 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12308&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12308&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.12308
Resumo:
Some diffeomorphisms of closed surfaces only have trivial invariant probabilities, i.e., those supported on the set of fixed points. Results of this nature make extensive use of the classification of surface homeomorphisms, making them typical of dimension 2. We attack this problem by showing that surface diffeomorphisms admiting non-trivial invariant probabilities exhibit some sort of positive linear growth. The techniques used are elementary and a significant part of the results remains valid in higher dimensions.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT AND SUMMARY PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
REFERENCES AND APPENDICES PDF