Título: | SURFACE DIFFEOMORPHISMS WITH NON-TRIVIAL INVARIANT MEASURES | |||||||
Autor: |
ANDRE RUBENS FRANCA CARNEIRO |
|||||||
Colaborador(es): |
JULIO CESAR DE SOUZA REBELO - Orientador |
|||||||
Catalogação: | 07/OUT/2008 | Língua(s): | ENGLISH - UNITED STATES |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12308&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12308&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.12308 | |||||||
Resumo: | ||||||||
Some diffeomorphisms of closed surfaces only have trivial
invariant probabilities, i.e., those supported on the set
of fixed points. Results of this nature make extensive use
of the classification of surface homeomorphisms, making
them typical of dimension 2. We attack this problem by
showing that surface diffeomorphisms admiting non-trivial
invariant probabilities exhibit some sort of positive
linear growth. The techniques used are elementary and
a significant part of the results remains valid in higher
dimensions.
|
||||||||