
4

Rotation vectors

In this section we want to define an analogue of the rotation number of

orientation-preserving homeomorphisms of the circle. We recall that for one

such homeomorphism f , having a lift F : R → R, the rotation number is

defined as

lim
n→∞

F n(x) − x

n
.

One shows that this limit exists, does not depend on the point x chosen and

that its value mod 1 does not depend on the choice of the lift F .

4.1

Rotation vectors of homeomorphisms of the torus T
2

There is a straightforward generalisation of the rotation number for

homeomorphisms of T
2 isotopic to the identity. Let f : T

2
→ T

2 be a

homeomorphism isotopic to the identity and µ a probability that is invariant

by f . If F : R
2
→ R

2 is a lift of f , we set

vµ(F ) =

∫

Ω

(F (x) − x) dµ,

where Ω is a fundamental region for the covering and µ also represents the

pullback of the original measure to R
2. Since F is also isotopic to the identity

(by lifting the isotopy between f and the identity), vµ(F ) does not depend on

the choice of Ω.

We set G(x) = F (x) − x and

G̃(x) = lim
n→∞

1

n

n−1
∑

i=0

G ◦ F i(x) = lim
n→∞

F n(x) − x

n
,

whose µ-almost everywhere (a.e.) existence is given by Birkhoff’s theorem

(Theorem A.1.2). The same theorem shows that

∫

Ω

(

lim
n→∞

F n(x) − x

n

)

dµ =

∫

Ω

G̃(x) dµ =

∫

Ω

G(x) dµ = vµ(F ).
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This encourages us to take vµ(F ) as the mean rotation vector of F (with

respect to µ). If, in addition, f is ergodic with respect to µ, the function G̃ is

constant µ-a.e. and its value is vµ(F ).

Since all lifts of f commute with the deck transformations of R
2
→ T

2,

the value of vµ(F ) mod Z
2 does not depend on F . Hence, we define the mean

rotation vector of f with respect to µ, vµ(f), as vµ(F ) mod Z
2, where F is any

lift of f . A simple change of coordinates proves the following lemma.

Lemma 4.1.1. The map vµ is a homomorphism between the group of homeo-

morphisms of T
2 isotopic to the identity that preserve µ, denoted by Diffµ(T2)0,

and T
2.

Proof. If f1 and f2 are in Diffµ(T2)0 and F1 and F2 are respective lifts, we have

vµ(F1 ◦ F2) =

∫

Ω

(F1(F2(x)) − x) dµ

=

∫

Ω

(F1(F2(x)) − F2(x)) dµ +

∫

Ω

(F2(x) − x) dµ

=

∫

F2(Ω)

(F1(x) − x) dµ +

∫

Ω

(F2(x) − x) dµ

= vµ(F1) + vµ(F2),

since F2 preserves µ and F2(Ω) is also a fundamental region. Taking both

members of the equation mod Z
2 proves the lemma.

This lemma show in particular that if an element f in Diffµ(T2)0 can

be written as the commutator of two elements of Diffµ(T2)0, then its rotation

vector is zero. The following theorem was proved by J. Franks in (4).

Theorem 4.1.2. If the rotation vector of f ∈Diffµ(T2)0 is zero and f is ergodic

with respect to µ, then f has a fixed point.

Finally, we show how to compute G̃(x). This will be useful to generalise

the rotation vector in the following section. Fix a fundamental region Ω of

bounded diameter (e.g. the unit square) and a point x in Ω. For each n, there

exists an unique deck transformation δn(x) such that F n(x) lies in δn(x)Ω.

Since the diameter of Ω is bounded, the distance between F n(x)−x and δn(x)

is bounded. Hence,

G̃(x) = lim
n→∞

δn(x)

n
.
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4.2

Rotation vectors of homeomorphisms of a surface of finite type

Now, let f : S → S be an homeomorphism of a surface of finite

type (i.e., a surface with finitely generated fundamental group), isotopic to

the identity and which preserves a probability measure µ. We define H as

the commutator subgroup [π1(S), π1(S)]. The subgroup H is normal and the

quotient πab
1 (S) = π1(S)/H is abelian and finitely generated. There exists a

corresponding normal covering Sab
→ S whose group of deck transformations

is isomorphic to πab
1 (S). Since f is isotopic to the identity, it can be lifted

to an homeomorphism F : Sab
→ Sab. As in the preceding section, given

a fundamental region Ω and a point x in Ω, we denote by δn(x) the deck

transformation such that F n(x) lies in δn(x)Ω. We set

G̃(x) = lim
n→∞

δn(x)

n
∈ πab

1 (S) ⊗ R

and

vµ(F ) =

∫

Ω

G̃ dµ.

The µ-a.e. existence of this limit is also a consequence of Birkhoff’s theorem.

Remark 4.2.1. The group πab
1 (S) is canonically isomorphic to the first

homology group with integer coefficients H1(S, Z). Abelian groups have a

natural structure of module over Z and the tensor product ⊗ is meant in

this sense. The real vector space πab
1 (S) ⊗ R is isomorphic to the first real

homology H1(S, R). These isomorphisms come from the Hurewicz theorem

and the universal coefficient theorem for homology (see (7)). This will not

be necessary in the sequel.

Lifting the isotopy between f and the identity, we have a lift

F : Sab
→ Sab that commutes with all deck transformations: let Ht be

the lifted isotopy. If σ is a deck transformation, then σHtσ
−1H−1

t , being the

difference of two lifts of the same map ht, is a deck transformation ρt. Since

the map t 7→ ρt is continue and the deck transformation group is discrete, it

is constant equal to ρ0, which is the identity. The lift F is called an identity lift.

The difference of two identity lifts is a deck transformation that commutes

with all other deck transformations. Since the fundamental group of a surface

is either abelian or has trivial center, we have that either every lift of f is an

identity lift, or that the identity lift is unique. In the first case, we set vµ(f)

as the image of vµ(F ) in the quotient of πab
1 (S)⊗R by the torsion-free part of

πab
1 (S), since this does not depend on the choice of the lift F . For the latter
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case, we take vµ(f) to be vµ(F ), where F is the only identity lift. When f is

ergodic with respect to µ, vµ(f) will be called simply rotation vector of f .
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