4 Rotation vectors

In this section we want to define an analogue of the rotation number of orientation-preserving homeomorphisms of the circle. We recall that for one such homeomorphism f, having a lift $F : \mathbb{R} \to \mathbb{R}$, the rotation number is defined as

$$\lim_{n \to \infty} \frac{F^n(x) - x}{n}$$

One shows that this limit exists, does not depend on the point x chosen and that its value mod 1 does not depend on the choice of the lift F.

4.1 Rotation vectors of homeomorphisms of the torus \mathbb{T}^2

There is a straightforward generalisation of the rotation number for homeomorphisms of \mathbb{T}^2 isotopic to the identity. Let $f : \mathbb{T}^2 \to \mathbb{T}^2$ be a homeomorphism isotopic to the identity and μ a probability that is invariant by f. If $F : \mathbb{R}^2 \to \mathbb{R}^2$ is a lift of f, we set

$$v_{\mu}(F) = \int_{\Omega} (F(x) - x) \, d\mu,$$

where Ω is a fundamental region for the covering and μ also represents the pullback of the original measure to \mathbb{R}^2 . Since F is also isotopic to the identity (by lifting the isotopy between f and the identity), $v_{\mu}(F)$ does not depend on the choice of Ω .

We set G(x) = F(x) - x and

$$\tilde{G}(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} G \circ F^i(x) = \lim_{n \to \infty} \frac{F^n(x) - x}{n},$$

whose μ -almost everywhere (a.e.) existence is given by Birkhoff's theorem (Theorem A.1.2). The same theorem shows that

$$\int_{\Omega} \left(\lim_{n \to \infty} \frac{F^n(x) - x}{n} \right) d\mu = \int_{\Omega} \tilde{G}(x) d\mu = \int_{\Omega} G(x) d\mu = v_{\mu}(F).$$

This encourages us to take $v_{\mu}(F)$ as the mean rotation vector of F (with respect to μ). If, in addition, f is ergodic with respect to μ , the function \tilde{G} is constant μ -a.e. and its value is $v_{\mu}(F)$.

Since all lifts of f commute with the deck transformations of $\mathbb{R}^2 \to \mathbb{T}^2$, the value of $v_{\mu}(F) \mod \mathbb{Z}^2$ does not depend on F. Hence, we define the *mean* rotation vector of f with respect to μ , $v_{\mu}(f)$, as $v_{\mu}(F) \mod \mathbb{Z}^2$, where F is any lift of f. A simple change of coordinates proves the following lemma.

Lemma 4.1.1. The map v_{μ} is a homomorphism between the group of homeomorphisms of \mathbb{T}^2 isotopic to the identity that preserve μ , denoted by $\text{Diff}_{\mu}(\mathbb{T}^2)_0$, and \mathbb{T}^2 .

Proof. If f_1 and f_2 are in $\text{Diff}_{\mu}(\mathbb{T}^2)_0$ and F_1 and F_2 are respective lifts, we have

$$\begin{aligned} v_{\mu}(F_{1} \circ F_{2}) &= \int_{\Omega} (F_{1}(F_{2}(x)) - x) \ d\mu \\ &= \int_{\Omega} (F_{1}(F_{2}(x)) - F_{2}(x)) \ d\mu + \int_{\Omega} (F_{2}(x) - x) \ d\mu \\ &= \int_{F_{2}(\Omega)} (F_{1}(x) - x) \ d\mu + \int_{\Omega} (F_{2}(x) - x) \ d\mu \\ &= v_{\mu}(F_{1}) + v_{\mu}(F_{2}), \end{aligned}$$

since F_2 preserves μ and $F_2(\Omega)$ is also a fundamental region. Taking both members of the equation mod \mathbb{Z}^2 proves the lemma.

This lemma show in particular that if an element f in $\text{Diff}_{\mu}(\mathbb{T}^2)_0$ can be written as the commutator of two elements of $\text{Diff}_{\mu}(\mathbb{T}^2)_0$, then its rotation vector is zero. The following theorem was proved by J. Franks in (4).

Theorem 4.1.2. If the rotation vector of $f \in Diff_{\mu}(\mathbb{T}^2)_0$ is zero and f is ergodic with respect to μ , then f has a fixed point.

Finally, we show how to compute $\tilde{G}(x)$. This will be useful to generalise the rotation vector in the following section. Fix a fundamental region Ω of bounded diameter (e.g. the unit square) and a point x in Ω . For each n, there exists an unique deck transformation $\delta_n(x)$ such that $F^n(x)$ lies in $\delta_n(x)\Omega$. Since the diameter of Ω is bounded, the distance between $F^n(x) - x$ and $\delta_n(x)$ is bounded. Hence,

$$\tilde{G}(x) = \lim_{n \to \infty} \frac{\delta_n(x)}{n}.$$

4.2

Rotation vectors of homeomorphisms of a surface of finite type

Now, let $f : S \to S$ be an homeomorphism of a surface of finite type (i.e., a surface with finitely generated fundamental group), isotopic to the identity and which preserves a probability measure μ . We define H as the commutator subgroup $[\pi_1(S), \pi_1(S)]$. The subgroup H is normal and the quotient $\pi_1^{ab}(S) = \pi_1(S)/H$ is abelian and finitely generated. There exists a corresponding normal covering $S^{ab} \to S$ whose group of deck transformations is isomorphic to $\pi_1^{ab}(S)$. Since f is isotopic to the identity, it can be lifted to an homeomorphism $F : S^{ab} \to S^{ab}$. As in the preceding section, given a fundamental region Ω and a point x in Ω , we denote by $\delta_n(x)$ the deck transformation such that $F^n(x)$ lies in $\delta_n(x)\Omega$. We set

$$\tilde{G}(x) = \lim_{n \to \infty} \frac{\delta_n(x)}{n} \in \pi_1^{ab}(S) \otimes \mathbb{R}$$

and

$$v_{\mu}(F) = \int_{\Omega} \tilde{G} \ d\mu$$

The μ -a.e. existence of this limit is also a consequence of Birkhoff's theorem.

Remark 4.2.1. The group $\pi_1^{ab}(S)$ is canonically isomorphic to the first homology group with integer coefficients $H_1(S,\mathbb{Z})$. Abelian groups have a natural structure of module over \mathbb{Z} and the tensor product \otimes is meant in this sense. The real vector space $\pi_1^{ab}(S) \otimes \mathbb{R}$ is isomorphic to the first real homology $H_1(S,\mathbb{R})$. These isomorphisms come from the Hurewicz theorem and the universal coefficient theorem for homology (see (7)). This will not be necessary in the sequel.

Lifting the isotopy between f and the identity, we have a lift $F : S^{ab} \to S^{ab}$ that commutes with all deck transformations: let H_t be the lifted isotopy. If σ is a deck transformation, then $\sigma H_t \sigma^{-1} H_t^{-1}$, being the difference of two lifts of the same map h_t , is a deck transformation ρ_t . Since the map $t \mapsto \rho_t$ is continue and the deck transformation group is discrete, it is constant equal to ρ_0 , which is the identity. The lift F is called an *identity lift*.

The difference of two identity lifts is a deck transformation that commutes with all other deck transformations. Since the fundamental group of a surface is either abelian or has trivial center, we have that either every lift of f is an identity lift, or that the identity lift is unique. In the first case, we set $v_{\mu}(f)$ as the image of $v_{\mu}(F)$ in the quotient of $\pi_1^{ab}(S) \otimes \mathbb{R}$ by the torsion-free part of $\pi_1^{ab}(S)$, since this does not depend on the choice of the lift F. For the latter case, we take $v_{\mu}(f)$ to be $v_{\mu}(F)$, where F is the only identity lift. When f is ergodic with respect to μ , $v_{\mu}(f)$ will be called simply rotation vector of f.