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General Setting

Let M be a closed connected orientable surface and f : M → M a C1

diffeomorphism. The set of fixed points of f will be denoted by Fix(f).

Definition 2.0.4. The diffeomorphism f : M → M is said to be isotopic to

the identity if there exists a continuous map

h : [0, 1] × M → M

(t, x) 7→ ht(x)

such that h0 : M → M is the identity map, h1 coincides with f and ht is a

diffeomorphism for every t in [0, 1]. If we can find such an h that, in addition,

the diffeomorphisms ht pointwisely fix Fix(f), then f is said to be isotopic to

the identity relatively to Fix(f).

If f is isotopic to the identity and M is not the torus, then f has a fixed

point, by the Lefschetz fixed point theorem (Theorem A.2.1). For the torus,

the supplementary hypothesis of “vanishing rotation vector”, which will be

presented in Chapter 4, also assures the existence of a fixed point. We shall

thus assume that Fix(f) is not empty and that f is isotopic to the identity

relatively to Fix(f).

Suppose that f preserves a probability measure µ, that we may suppose

ergodic by the ergodic decomposition theorem (Theorem A.1.5). Since Fix(f)

is f -invariant, we have µ(Fix(f)) = 0 or 1. We shall assume that µ(Fix(f)) = 0.

Since Fix(f) is not empty, S = M \ Fix(f) is an open surface. The

restriction f : S → S permutes the connected components of S and is isotopic

to the identity. We conclude that a component of positive measure must be

periodic, since the total measure is finite. By ergodicity, there exists only one

orbit of components of positive measure. Thus, by replacing f by a suitable

power fk and by normalising µ, we may assume without loss of generality

that S is connected.
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We shall assume, to simplify the exposition, that Fix(f) is discrete (finite)

and that the support of the probability µ, supp(µ), is compact in S. In other

words, we will suppose that each fixed point of f in M has a neighborhood of

zero measure.

Remark 2.0.5. This last hypothesis is strictly stronger than µ(Fix(f)) = 0.

In fact, it is equivalent to the existence of a f -invariant compact subset of S.

Proof. One direction is obvious since the support of µ is f -invariant. And if

there exists a compact f -invariant subset of S, Theorem A.1.6 assures us of

the existence of an invariant probability supported in it. Its support is thus

compact in S.

The surface M may be thought as a polygon whose edges were suitably

identified. We obtain S by removing a finite number of points from the interior

of this polygon. With this representation, it is easier to see that S retracts to a

finite graph. In particular, this shows that the fundamental group π1(S) is free

and finitely generated. By the Riemann uniformization theorem, the universal

covering of S may be identified with the hyperbolic disk D. We shall choose

an ideal hyperbolic polygon S0 as fundamental region for this covering. When

no confusion is possible, we will implicitly identify S and S0. In other cases,

if x is a point of S, we will denote by x0 the corresponding point in S0. The

same convention will be used for lifting sets from S to S0.

Remark 2.0.6. By fundamental region we mean a choice of an unique point

from each fiber of the covering. Hence, S0 does not contain all of its edges. This

implies that the lift of a compact from S to S0 may not be compact. However,

lifting a compact subset of S always yields a bounded subset of S0.

We will denote by Γ both the fundamental group π1(S) and the group

of deck transformations AutS(D), noting that they are canonically isomorphic.

Finally, when we lift f to a diffeomorphism F : D → D, we will always choose

an “identity lift” (see Chapter 4 for a definition).
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