Título: | ESTIMATES OF PLASTIC ZONES AHEAD OF CRACKS TIPS | |||||||
Autor: |
RAFAEL ARAUJO DE SOUSA |
|||||||
Colaborador(es): |
LUIZ FERNANDO CAMPOS RAMOS MARTHA - Orientador JAIME TUPIASSU PINHO DE CASTRO - Coorientador ALEXANDRE ANTONIO DE OLIVEIRA LOPES - Coorientador |
|||||||
Catalogação: | 22/DEZ/2011 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=18829&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=18829&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.18829 | |||||||
Resumo: | ||||||||
The size of plastic zones (pz) at the crack tips validates the use of Linear
Elastic Fracture Mechanics (LEFM). Thus, this thesis studies the limits of validity
of the two parameters that characterize MFLE from the pz estimates. These two
parameters are the stress intensity factor (K) and the T-stress. This work shows
that KI and the T-stress are terms of the Williams’ series expansion, which is the
complete linear elastic (LE) solution for the stress fields generated at the crack
tips. It also demonstrates that the Williams’ series is a different way of writing the
Westergaard stress function in terms of a trigonometric series with infinite terms,
and comments that even if the two functions are the complete LE solution for
cracked bodies, they have limited use, because they generate infinite tensions at
the crack tip. These singular stresses are characteristics of mathematical problem,
not reproducing the real mechanical behavior. As an attempt to outline the
problem of singularity in a qualitative way, this work proposes three ways to
consider the yielding effects in pz estimates in which one adopts a perfectly
plastic material. The completeness of the stress fields generated by the
Westergaard stress function is verified numerically from the use of Finite Element
Method (FEM) and from of the Hybrid Boundary Element Method (HBEM). Two
of the proposals to consider the yielding effects in the pz are used in conjunction
with HBEM. The problem of pz estimates is instrinsically non-linear due to the
singularity obtained by the mathematical formulation. Finally, this thesis also
estimates the pz from a non-linear numerical analysis via FEM. The hardening
effects are also tested in these nonlinear estimates. Moreover, they are compared
to estimates corrected LE in which a perfectly plastic material is considered.
|
||||||||