Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: THE PARIS-HARRINGTON THEOREM
Autor: WILSON REIS DE SOUZA NETO
Colaborador(es): NICOLAU CORCAO SALDANHA - Orientador
Catalogação: 17/ABR/2009 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13399&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13399&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.13399
Resumo:
From Godel’s Incompleteness Theorem we know that there are true sentences about natural numbers which can not be proved in Peano Arithmetic. Paris and Harrington gave an example of a variation of the finite Ramsey Theorem which can not be proved in Peano Arithmetic although it can be easily proved in usual Set Theory. This is usually considered the first example of a mathematically natural undecidable sentence. Besides the original proof, another one, using Model Theory, is presented in this dissertation.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT AND SUMMARY PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
REFERENCES PDF