Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: AUTOMORFISMOS GENÉRICOS DE CUBOS COM ALÇAS
Autor: LEONARDO NAVARRO DE CARVALHO
Colaborador(es): PAUL ALEXANDER SCHWEITZER - Orientador
ULRICH OERTEL - Coorientador
Catalogação: 03/OUT/2003 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=3970&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=3970&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.3970
Resumo:
Automorfismos genéricos de cubos com alças (handlebodies) aparecem do estudo de classes the isotopia de automorfismos de variedades orientáveis de dimensão três. Automorfismos genéricos permanecem como uma das partes menos entendidas desse estudo.Dado um automorfismo genérico de um cubo com alças, é conhecida uma forma de se construir uma laminação bidimensional que é invariante pelo automorfismo. A essa laminação se associa um fator de crescimento. É sabido que, no caso de tal fator de crescimento ser minimal - uma característica importante, pois mede a complexidade essencial do automorfismo - a laminação deve gozar de uma certa propriedade de incompressibilidade. Nessa tese mostramos que o processo de se achar uma laminação com tal propriedade é algoritmico. Por outro lado, mostramos que tal propriedade não garante que o respectivo fator de crescimento seja minimal. Propomos uma outra propriedade, tensão transversal, mais forte que incompressibilidade, que conjecturamos também ser condição necessária para que o fator de crescimento seja minimal. Provamos a conjectura em alguns casos.Além dos resultados mencionados acima, desenvolvemos métodos para gerar automorfismos genéricos de cubos com alcas, que usamos para apresentar alguma variedade de exemplos.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTA DE FIGURAS PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
CONCLUSÃO PDF    
BIBLIOGRAFIA PDF