Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: O TEOREMA DE PARIS-HARRINGTON
Autor: WILSON REIS DE SOUZA NETO
Colaborador(es): NICOLAU CORCAO SALDANHA - Orientador
Catalogação: 17/ABR/2009 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13399&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13399&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.13399
Resumo:
Sabemos pelo Teorema da Incompletude de Godel que existem afirmações verdadeiras sobre números naturais que não podem ser demonstradas na aritmética de Peano. Paris e Harrington deram um exemplo de uma variação do Teorema de Ramsey finito que não pode ser demonstrada em aritmética de Peano apesar de ser facilmente demonstrável na Teoria de Conjuntos usual. Este é geralmente considerado o primeiro exemplo matematicamente natural de uma sentença indecidível. Além da demonstração original, apresentamos nessa dissertação outra usando Teoria de Modelos.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT E SUMÁRIO PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS PDF