$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: APPROXIMATIONS OF REAL NUMBERS BY RATIONAL NUMBERS: WHY THE CONTINUED FRACTIONS CONVERGING PROVIDE THE BEST APPROXIMATIONS?
Autor: MARCELO NASCIMENTO LORIO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARCOS CRAIZER - ADVISOR
Nº do Conteudo: 23981
Catalogação:  03/02/2015 Liberação: 03/02/2015 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=23981&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=23981&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.23981

Resumo:
Continued fractions are representations of real numbers that are independent of the choice of the numerical basis. The choice of basis ten frequently hides more than shows efficient approximations of real numbers by rational ones. Integrating approximations of real numbers by continued fractions with geometrical interpretations clarify the subject. The study of geometrical aspects of Euclids algorithm, for example, is a powerful method for the visualization of continued fractions approximations. Theorems of Dirichlet, Hurwitz-Markov and Lagrange show that, definitely, the best approximations of real numbers come from continued fractions, and the errors are estimated with elegant mathematical technique.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LIST OF FIGURES  PDF
CHAPTER 1  PDF
CHAPTER 2  PDF
CHAPTER 3  PDF
CHAPTER 4  PDF
CHAPTER 5  PDF
CHAPTER 6  PDF
CHAPTER 7  PDF
CHAPTER 8  PDF
CHAPTER 9  PDF
CHAPTER 10  PDF
REFERENCES  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui