Título: | DYNAMIC ANALYSIS OF HYPERLASTIC CIRCULAR MEMBRANES | |||||||
Autor: |
RENATA MACHADO SOARES |
|||||||
Colaborador(es): |
PAULO BATISTA GONCALVES - Orientador DJENANE CORDEIRO PAMPLONA - Coorientador |
|||||||
Catalogação: | 15/JUN/2009 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13790&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13790&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.13790 | |||||||
Resumo: | ||||||||
This work presents an analysis of the nonlinear vibration response of a prestretched
hyperelastic circular membrane subjected to finite deformations. The
membrane material is assumed to be isotropic, homogeneous and neo-Hookean.
Based on the theory of finite deformations for hyperelastic membranes, a
variational formulation is developed. First the exact solution of the membrane
under a uniform radial stretch is obtained and then the equations of motion of the
pre-stretched membrane are derived using the Hamilton’s principle. From the
linearized equations of motion, the natural frequencies and mode shapes of the
membrane are obtained analytically. Then the natural modes are used to
approximate the nonlinear deformation field using the Galerkin method. Several
reduced order models are tested using the Karhunen-Loève method and analytical
methods. Besides, the influence of the variation of the membrane thickness and
material density along the radial direction of the membrane on the vibrations is
investigated. The same methodology it is used for the annular membrane. Finally,
the non-linear vibrations of the annular membrane coupled to a rigid inclusion are
studied. The rigid inclusion inserts traction forces in the membrane and its own
weight causes static transverse and radial displacements in the membrane. The
same problems are analyzed by finite elements using the commercial program
Abaqus®.
|
||||||||