Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DYNAMIC ANALYSIS OF HYPERLASTIC CIRCULAR MEMBRANES
Autor: RENATA MACHADO SOARES
Colaborador(es): PAULO BATISTA GONCALVES - Orientador
DJENANE CORDEIRO PAMPLONA - Coorientador
Catalogação: 15/JUN/2009 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13790&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13790&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.13790
Resumo:
This work presents an analysis of the nonlinear vibration response of a prestretched hyperelastic circular membrane subjected to finite deformations. The membrane material is assumed to be isotropic, homogeneous and neo-Hookean. Based on the theory of finite deformations for hyperelastic membranes, a variational formulation is developed. First the exact solution of the membrane under a uniform radial stretch is obtained and then the equations of motion of the pre-stretched membrane are derived using the Hamilton’s principle. From the linearized equations of motion, the natural frequencies and mode shapes of the membrane are obtained analytically. Then the natural modes are used to approximate the nonlinear deformation field using the Galerkin method. Several reduced order models are tested using the Karhunen-Loève method and analytical methods. Besides, the influence of the variation of the membrane thickness and material density along the radial direction of the membrane on the vibrations is investigated. The same methodology it is used for the annular membrane. Finally, the non-linear vibrations of the annular membrane coupled to a rigid inclusion are studied. The rigid inclusion inserts traction forces in the membrane and its own weight causes static transverse and radial displacements in the membrane. The same problems are analyzed by finite elements using the commercial program Abaqus®.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
CHAPTER 8 PDF    
REFERENCES PDF