# 5 Membrana circular com massa específica e espessura variável

No estudo de membranas, quando se fala da variação da sua inércia, logo se recai na variação da sua massa específica ou da sua espessura. Na literatura encontram-se diversos estudos tratando da variação da massa específica de membranas circulares, principalmente na direção radial (Jabareen e Eisenberger, 2001; Bala Subrahmanyam e Sujith, 2001; Willatzen, 2002; Buchanan,2005). Todos estes resultados são restritos à análise das vibrações lineares usando a teoria elástica de membranas.

Por isso, inicialmente, estuda-se o caso da membrana circular de espessura constante, porém com variação da massa específica na direção radial e comparamse os resultados com os encontrados na literatura.

Posteriormente, estuda-se o problema da membrana circular com variação da espessura.

#### 5.1. Variação da massa específica na direção radial da membrana circular

Neste problema considera-se que a massa específica da membrana varia na direção radial da seguinte maneira (Jabareen e Eisenberger, 2001; Bala Subrahmanyam e Sujith, 2001; Willatzen, 2002):

$$\Gamma(\rho) = \Gamma_o (1 + \kappa \rho^2) \tag{5.1}$$

onde  $\Gamma_o$  é um valor constante e  $\kappa$  é um valor constante conhecido que descreve a variação da massa específica ao longo do raio indeformado. Tem-se que a massa específica cresce do centro para o bordo quando  $\kappa > 0$  e decresce quando  $\kappa < 0$ , como pode ser observado na Figura 5.1 .



Figura 5.1 – Variação da massa específica normalizada ao longo da direção radial da membrana (Equação (5.1)).

A resposta estática neste caso é a igual à apresentada no item 4.1.

### 5.1.1. Análise linear da vibração livre

Para a análise linear das vibrações livres parte-se da equação de movimento na direção transversal da membrana (3.48) na qual é substituído o raio da membrana tracionada (4.1), obtendo-se a seguinte equação de movimento:

$$\frac{2C_1}{\Gamma_o(1+\kappa\rho^2)} \left(1 - \frac{1}{\delta^6}\right) \left(\frac{\partial^2 w}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial w}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 w}{\partial \theta^2}\right) - \frac{\partial^2 w}{\partial t^2} = 0$$
 (5.2)

O deslocamento transversal w é obtido através da transformação da equação de movimento linear (5.2) em uma equação diferencial que possue solução analítica. Empregando a separação das variáveis  $\rho$ ,  $\theta$  e t, tem-se que a solução da equação (5.2) pode ser escrita em função dessas variáveis da seguinte maneira:

$$w(\rho, \theta, t) = A_{mn} G(\rho) \cos(n\theta) \cos(\omega_{mn} t)$$
 (5.3)

onde  $A_{mn}$  corresponde à amplitude modal;  $G(\rho)$ , à função em  $\rho$  do deslocamento transversal; m, ao número de semi-ondas radiais; n, ao número de ondas circunferenciais e  $\omega_{mn}$ , à freqüência natural de vibração.

Substituindo (5.3) em (5.2), obtém-se a seguinte equação de movimento linear em função da direção radial:

$$\frac{d^{2}G(\rho)}{d\rho^{2}} + \frac{1}{\rho} \frac{dG(\rho)}{d\rho} + \left( \frac{\Gamma_{o}(1 + \kappa \rho^{2})\delta^{6}\omega_{mn}^{2}}{2C_{1}(\delta^{6} - 1)} - \frac{n^{2}}{\rho^{2}} \right) G(\rho) = 0$$
 (5.4)

A equação (5.4) é similar as equação diferencial Whittaker (Abramowitz e Stegun, 1972). Utilizando a solução da equação diferencial de Whittaker (Abramowitz e Stegun, 1972) juntamente com as condições de contorno do problema, obtém-se a seguinte solução analítica para o deslocamento transversal da membrana circular:

$$w(\rho, \theta, t) = A_{mn} M_n \left( \frac{-I}{4} \sqrt{\frac{K}{\kappa}}; \frac{n}{2}; \sqrt{K\kappa} \rho^2 I \right) \frac{1}{\rho} \cos(n\theta) \cos(\omega_{mn} t)$$
 (5.5)

sendo:

$$K = \frac{\Gamma_o k_{mn} \delta^6}{2C_1(\delta^6 - 1)}$$
 (5.6)

onde  $M_n$  é a função hipergeométrica confluente Whittaker do tipo M;  $k_{mn}$  é o m-ésimo valor positivo onde a função Whittaker com  $\rho = R_o$  é nula.

A função hipergeométrica confluente Whittaker é uma forma alterada da função hipergeométrica, sendo uma forma alternativa de solução linearmente independente para as equações hipergeométricas confluentes dadas por (Wolfram mathworld, 2008):

$$M_n(\alpha; \beta; x) = x^{0.5 + \beta} e^{-x/2} \sum_{i=0}^{\infty} \frac{(0.5 + \beta - \alpha)_i}{(1 + 2\beta)_i} \frac{x^i}{i!}$$
 (5.7)

onde ()<sub>i</sub> é o símbolo Pochhammer dado por  $(x)_i = x(x+1)\cdots(x+j+1)$  para  $j \ge 0$  (Wolfram mathworld, 2008).

Substituindo o deslocamento transversal (5.5) na equação de movimento (5.2) obtém-se a freqüência natural da membrana circular com massa específica variável como:

$$\omega_{mn} = \sqrt{k_{mn}} \tag{5.8}$$

Os deslocamentos radial u e circunferencial v são desprezíveis em relação ao deslocamento transversal w, sendo suas contribuições em termos de inércia e rigidez desprezadas na análise das vibrações transversais da membrana.

As frequências e os modos de vibração lineares foram calculados através da formulação analítica e comparados com os resultados obtidos pelo método dos elementos finitos.

Para a solução via método dos elementos finitos, utiliza-se uma malha com 2880 elementos de membrana M3D4R e M3D3 que gera um sistema com 8643

equações. A malha é discretizada com 40 elementos na direção radial e 72 na direção circunferencial, divididos em 40 conjuntos axissimétricos com 72 elementos cada. Para a variação da massa específica, cada conjunto de elementos recebe o valor dado na equação (5.1) onde  $\rho$  é a distância do centro da membrana até centro do elemento na direção radial.

Os resultados analíticos (AN) e obtidos por elementos finitos (MEF) para diferentes valores de  $\kappa$  em (5.1) são comparados na Tabela 5.1.

Tabela 5.1 – Freqüências de vibração lineares (rad/s) para a membrana circular com massa específica variável na direção radial.

|                  |   |                |        | $\kappa = -0.5$ |        |                |        |  |
|------------------|---|----------------|--------|-----------------|--------|----------------|--------|--|
| m                | n | $\delta = 1.1$ |        | δ = 1.5         |        | $\delta = 2.0$ |        |  |
| m                |   | AN             | MEF    | AN              | MEF    | AN             | MEF    |  |
| 1                | 0 | 20.859         | 20.925 | 31.989          | 30.283 | 33.230         | 31.458 |  |
| 1                | 1 | 34.324         | 34.411 | 49.676          | 49.801 | 51.603         | 51.734 |  |
| 1                | 2 | 42.773         | 42.581 | 61.903          | 68.141 | 64.305         | 70.786 |  |
|                  |   |                |        | $\kappa = 0.5$  |        |                |        |  |
|                  |   | $\delta = 1.1$ |        | δ = 1.5         |        | δ = 2.0        |        |  |
| m                | n | AN             | MEF    | AN              | MEF    | AN             | MEF    |  |
| 1                | 0 | 18.721         | 18.710 | 27.094          | 27.078 | 28.145         | 28.129 |  |
| 1                | 1 | 28.873         | 29.029 | 41.786          | 42.012 | 43.408         | 43.642 |  |
| 1                | 2 | 38.328         | 38.219 | 55.470          | 55.312 | 57.623         | 57.459 |  |
| $\kappa = 0.595$ |   |                |        |                 |        |                |        |  |
|                  |   | $\delta = 1.1$ |        | $\delta = 1.5$  |        | $\delta = 2.0$ |        |  |
| m                | n | AN             | MEF    | AN              | MEF    | AN             | MEF    |  |
| 1                | 0 | 18.543         | 18.529 | 26.837          | 26.816 | 27.878         | 27.856 |  |
| 1                | 1 | 28.648         | 28.625 | 41.461          | 41.427 | 43.069         | 43.035 |  |
| 1                | 2 | 37.705         | 37.591 | 54.568          | 54.404 | 56.685         | 56.515 |  |

Observa-se que os valores das freqüências obtidos pelos dois métodos são concordantes, tendo uma menor variação nos primeiros modos de vibração. Verifica-se também que as freqüências decrescem à medida que  $\kappa$  cresce, ou seja, aumenta a densidade no bordo da membrana.

Os modos de vibração possuem a mesma forma que os apresentados na Figura 4.5.

Os valores para o parâmetro de frequência, 
$$\overline{\omega} = \omega_{mn} \sqrt{\frac{\Gamma_o \, \delta^6}{2C_1(\delta^6 - 1)}}$$
, obtidos

com os resultados deste trabalho são favoravelmente comparados com os resultados apresentados por Bala Subrahmanyam e Sujith (2001) na Tabela 5.2. Os autores calculam esse parâmetro de freqüência analiticamente para membranas circulares completas e anulares com diversos coeficientes de heterogeneidade  $\kappa$ . Porém, os autores utilizam como resposta da equação diferencial uma função hipergeométrica de Kummer (Abramowitz e Stegun, 1972).

Tabela 5.2 – Parâmetro da frequência de vibração  $\overline{\omega}$  para a membrana circular com massa específica variável na direção radial.

|     | $\overline{\omega} = \omega_{mn} \sqrt{\frac{2}{2}}$ | $\frac{\Gamma_o  \delta^6}{C_1(\delta^6 - 1)}$ |        |
|-----|------------------------------------------------------|------------------------------------------------|--------|
| к   | Bala <i>et al</i> (2001)                             | AN                                             | MEF    |
| 0.5 | 2.2819                                               | 2.2819                                         | 2.2806 |
| 1.0 | 2.1736                                               | 2.1736                                         | 2.1702 |
| 1.5 | 2.0778                                               | 2.0778                                         | 2.0728 |

Na Figura 5.2 apresenta-se uma relação entre a freqüência de vibração e o coeficiente de tração radial ( $\delta$ ) da membrana para diferentes distribuições da massa específica. Observa-se um grande aumento na freqüência natural para pequenos valores de  $\delta$  e que a curva tende a um valor constante quando  $\delta \rightarrow \infty$ , tal como no caso da membrana com densidade constante.



Figura 5.2 - Frequência de vibração (rad/s) em função do coeficiente de tração radial  $\delta$  para diferentes variações da massa específica da membrana circular.

Na Figura 5.3 apresenta-se uma relação entre a freqüência de vibração e o coeficiente de variação da massa específica ( $\kappa$ ) da membrana para diferentes valores de  $\delta$ . Observa-se uma diminuição na freqüência natural com o aumento do valor do coeficiente de variação da massa específica e que, para valores de  $\delta$  maior que dois a curva já é bem próxima da curva com  $\delta \rightarrow \infty$  que define o limite superior da freqüência.



Figura 5.3 - Freqüência de vibração (rad/s) em função do coeficiente de variação da massa específica (κ).

#### 5.1.2. Análise não linear da vibração livre

Na análise das vibrações não lineares da membrana circular os deslocamentos u e v são desprezados e a equação de movimento não linear na

direção transversal da membrana circular com massa específica variável é dada por:

$$\left[ \frac{-4\rho^{6}w_{,\rho}^{2} + \rho^{4}(\delta^{2}\rho^{2} + w_{,\theta}^{2} + \rho^{2}w_{,\rho}^{2})}{\delta^{2}(\delta^{2}\rho^{2} + w_{,\theta}^{2} + \rho^{2}w_{,\rho}^{2})^{3}} - 1 \right] 2C_{1} \frac{\partial^{2}w}{\partial\rho^{2}} + \left[ \frac{-4\rho^{5}\delta^{2} - 8\rho^{4}w_{,\theta}w_{,\theta\rho} - 4\rho^{5}w_{,\rho}^{2}}{\delta^{2}(\delta^{2}\rho^{2} + w_{,\theta}^{2} + \rho^{2}w_{,\rho}^{2})^{3}} + \frac{2C_{1}\frac{\partial w}{\partial\rho}}{\delta^{2}(\delta^{2}\rho^{2} + w_{,\theta}^{2} + \rho^{2}w_{,\rho}^{2})^{2}} - \frac{1}{\rho} \right] 2C_{1}\frac{\partial w}{\partial\rho} + \left[ \frac{-4\rho^{2}w_{,\theta}^{2} + \rho^{2}(\delta^{2}\rho^{2} + w_{,\theta}^{2} + \rho^{2}w_{,\rho}^{2})}{\delta^{2}(\delta^{2}\rho^{2} + w_{,\theta}^{2} + \rho^{2}w_{,\rho}^{2})^{3}} - \frac{1}{\rho^{2}} \right] 2C_{1}\frac{\partial^{2}w}{\partial\theta^{2}} - \frac{\partial^{2}w}{\partial\theta^{2}}\Gamma_{o}(1 + \kappa\rho^{2}) = 0$$
(5.9)

Para a análise não linear, aproxima-se o campo de deslocamentos transversais *w* pela Equação (5.5) e utiliza-se o método de Galerkin para se obter as equações diferenciais ordinárias não lineares no domínio do tempo.

Estuda-se as vibrações associadas à menor frequência natural (m = 1 e n = 0), resolvendo-se a equação de movimento não linear (5.9). Obtém-se assim a relação frequência de vibração-amplitude que é apresentada na Figura 5.4 para diferentes valores do coeficiente de variação da massa específica  $\kappa$ .



Figura 5.4 - Relação freqüência (rad/s)-amplitude (*m*) para vibração livre da membrana circular com diferentes valores de κ.

Na Figura 5.5 ilustra-se a relação freqüência de vibração - amplitude modal para diferentes valores da coeficiente de tração radial para  $\kappa = 0.5$ .



Figura 5.5 - Relação frequência (rad/s) – amplitude (m) para vibração livre da membrana circular com diferentes valores de  $\delta$  ( $\kappa$  = 0.5).

Observa-se nas Figura 5.4 e 5.5 o mesmo comportamento *hardening*, maior para as menores amplitudes de vibração e tendendo a um valor constante nas grandes amplitudes de vibração, em todos os casos apresentados. Esse valor constante da freqüência de vibração refere-se ao valor da freqüência quando a coeficiente de tração radial tende a infinito.

Verifica-se, também, que a membrana menos tracionada exibe uma resposta altamente não linear e que essa não linearidade diminui com o aumento do coeficiente de tração radial e a resposta fica praticamente linear para um raio tracionado igual a duas vezes o raio indeformado, como já foi observado no capítulo 4.

Além disso, observa-se que a variação da massa específica não influencia no tipo do comportamento não-linear da membrana circular. Para uma variação com aumento da massa específica, ao longo da direção radial ( $\kappa > 0$ ), os valores das freqüências de vibração diminuem deslocando a curva para a esquerda. Enquanto que, para uma variação com diminuição da massa específica na direção radial ( $\kappa < 0$ ) os valores das freqüências de vibração aumentam deslocando a curva para a direita.

Na Figura 5.6 mostra-se a relação normalizada freqüência-deslocamento da membrana para um ponto de coordenadas (0; 0.5) da membrana indeformada. A freqüência de vibração foi normalizada com relação à freqüência natural de cada caso. Novamente observa-se que quanto mais tracionada a membrana menor o grau de não-linearidade da resposta.



Figura 5.6 - Relação normalizada frequência (rad/s) - deslocamento transversal (m) da membrana circular ( $\kappa = 0.5$ ).

A relação frequência – deslocamento também é obtida a partir da resposta no tempo, encontrada por elementos finitos, e utilizando a metodologia proposta por Nandakumar e Chatterjee (2005). Essa relação é favoravelmente comparada com a relação obtida analiticamente para um ponto de coordenadas (0.5; 0) da membrana indeformada, para duas variações da massa específica. Esses resultados são apresentados na Figura 5.7.

Para a solução por elementos finitos é utilizado um modelo com uma malha com 2880 elementos de casca S4R e S3 que gera um sistema com 8643 equações.



Figura 5.7 - Relação frequência de vibração (rad/s)-deslocamento transversal (m) ( $\delta = 1.1$ ).

## 5.2. Variação da espessura na direção radial da membrana circular

Para a membrana com espessura variável considera-se uma variação na direção radial da configuração indeformada da seguinte maneira:

$$h(\rho) = h_0 e^{\eta \rho^2} \tag{5.10}$$

onde  $h_o$  é um valor de referência e  $\eta$  é uma constante que descreve a variação da espessura ao longo do raio indeformado. Quando  $\eta > 0$  tem-se que a espessura cresce do centro para o bordo e decresce quando  $\eta < 0$ , como pode ser observado na Figura 5.8.



Figura 5.8 – Variação da espessura normalizada ao longo da direção radial da membrana (Equação (5.10)).

#### 5.2.1. Análise estática

Neste caso não há solução exata para a equação não-linear de equilíbrio. A solução estática da membrana com espessura variável sob deslocamento radial uniforme é obtida de forma aproximada através da integração numérica das equações (3.36) e (3.37), atendendo as condições de contorno (3.38) e (3.39).

As componentes de deslocamento estático circunferencial e transversal,  $\beta_0$  e  $z_o$  respectivamente, são nulas.

Para a solução via método dos elementos finitos, utiliza-se, no programa comercial Abaqus®, 1440 elementos sólidos tri-dimensionais C3D8RH e C3DH que gera um sistema com 10086 equações. Ressalta-se que os resultados obtidos com os elementos sólidos foram comparados com resultados utilizando elementos

de membrana apresentando bons resultados. Optou-se pelo uso dos elementos sólidos para melhor representar a variação da espessura ao longo do raio da membrana.

Dessa forma, obtém-se a configuração tracionada da membrana circular para diferentes valores do coeficiente de tração radial ( $\delta$ ). Na Figura 5.9 apresenta-se a variação do comprimento radial tracionado obtido pela integração numérica (IN) e pelo método dos elementos finitos (MEF), para membranas circulares com três valores de  $\delta$  e coeficiente de variação da espessura  $\eta = 0.5$ .



Figura 5.9 – Variação do comprimento radial tracionado da membrana circular com espessura variável ( $\eta = 0.5$ ).

Para visualizar a influência da variação radial da espessura no raio tracionado  $(r_o)$ , apresenta-se na Figura 5.10 a variação do deslocamento radial após a aplicação da tração radial na membrana circular para diferentes valores do coeficiente de variação da espessura. Os valores apresentados são os obtidos pela integração numérica.



Figura 5.10 – Variação do deslocamento radial (m) da membrana circular com espessura variável para diferentes valores de  $\eta$ .

Observa-se que a variação de  $r_o(\rho)$  é levemente parabólica. A função que representa a variação da coordenada radial tracionada é então determinada através do método dos mínimos quadrados, sendo dada por:

$$r_o(\rho) = a_1 \rho^4 + a_2 \rho^3 + a_3 \rho^2 + a_4 \rho$$
 (5.11)

onde  $a_i$  são constantes que dependem da configuração tracionada da membrana.

As membranas circulares apresentadas na Figura 5.10 possuem as seguintes distribuições radiais:

$$\eta = 0.75 \qquad r_o(\rho) = 0.010 \left(\frac{\rho}{R_o}\right)^4 - 0.035 \left(\frac{\rho}{R_o}\right)^3 + 0.002 \left(\frac{\rho}{R_o}\right)^2 + 1.123 \left(\frac{\rho}{R_o}\right)$$

$$\eta = 0.50 \qquad r_o(\rho) = 0.010 \left(\frac{\rho}{R_o}\right)^4 - 0.035 \left(\frac{\rho}{R_o}\right)^3 + 0.002 \left(\frac{\rho}{R_o}\right)^2 + 1.123 \left(\frac{\rho}{R_o}\right)$$

$$\delta = 1.1 \qquad (5.12)$$

$$\eta = -0.50 \qquad r_o(\rho) = 0.012 \left(\frac{\rho}{R_o}\right)^4 - 0.004 \left(\frac{\rho}{R_o}\right)^3 + 0.005 \left(\frac{\rho}{R_o}\right)^2 + 1.078 \left(\frac{\rho}{R_o}\right)$$

$$\eta = -0.75 \qquad r_o(\rho) = 0.028 \left(\frac{\rho}{R_o}\right)^4 - 0.009 \left(\frac{\rho}{R_o}\right)^3 + 0.013 \left(\frac{\rho}{R_o}\right)^2 + 1.067 \left(\frac{\rho}{R_o}\right)$$

$$\eta = 0.75 \qquad r_o(\rho) = 0.134 \left(\frac{\rho}{R_o}\right)^4 - 0.369 \left(\frac{\rho}{R_o}\right)^3 + 0.029 \left(\frac{\rho}{R_o}\right)^2 + 1.705 \left(\frac{\rho}{R_o}\right)$$

$$\delta = 1.5 \qquad (5.13)$$

$$\delta = 1.5 \qquad (5.13)$$

$$\eta = -0.50 \qquad r_o(\rho) = 0.080 \left(\frac{\rho}{R_o}\right)^4 - 0.021 \left(\frac{\rho}{R_o}\right)^3 + 0.032 \left(\frac{\rho}{R_o}\right)^2 + 1.367 \left(\frac{\rho}{R_o}\right)$$

$$\eta = 0.75 \quad r_o(\rho) = 0.171 - \left(\frac{\rho}{R_o}\right)^4 - 0.564 \left(\frac{\rho}{R_o}\right)^3 + 0.046 \left(\frac{\rho}{R_o}\right)^2 + 2.347 \left(\frac{\rho}{R_o}\right)$$

$$\eta = 0.50 \quad r_o(\rho) = 0.080 - \left(\frac{\rho}{R_o}\right)^4 - 0.336 \left(\frac{\rho}{R_o}\right)^3 + 0.023 \left(\frac{\rho}{R_o}\right)^2 + 2.233 \left(\frac{\rho}{R_o}\right)$$

$$\delta = 2.0 \qquad (5.14)$$

$$\eta = -0.50 \quad r_o(\rho) = 0.096 - \left(\frac{\rho}{R_o}\right)^4 + 0.104 \left(\frac{\rho}{R_o}\right)^3 + 0.036 \left(\frac{\rho}{R_o}\right)^2 + 1.764 \left(\frac{\rho}{R_o}\right)$$

$$\eta = -0.75 \quad r_o(\rho) = 0.225 - \left(\frac{\rho}{R_o}\right)^4 + 0.039 \left(\frac{\rho}{R_o}\right)^3 + 0.087 \left(\frac{\rho}{R_o}\right)^2 + 1.647 \left(\frac{\rho}{R_o}\right)$$

Substituindo a equação de  $r_o(\rho)$ , dada em (5.11), nas equações das tensões principais  $\sigma_1$  e  $\sigma_2$ , dadas em (3.30) e (3.31), obtém-se uma expressão analítica aproximada (AN) para as tensões. Essa expressão, juntamente com as soluções obtidas pela integração numérica (IN) e por elementos finitos (MEF) são favoravelmente comparadas na Figura 5.11 para uma membrana circular com  $\delta = 1.10$  e diferentes valores do coeficiente de variação da espessura.

Observa-se na Figura 5.11 que as tensões principais variam de forma parabólica e que, para uma variação com aumento da espessura, ao longo da direção radial ( $\eta > 0$ ), os valores das tensões principais diminuem. Enquanto que, para uma variação com diminuição da espessura na direção radial ( $\eta < 0$ ) os valores das tensões principais aumentam. Finalmente observa-se que, quanto maior é a variação de  $\eta$ , maior é a variação das tensões ao longo da direção radial.



Figura 5.11 – Tensões principais  $(N/m^2)$  da membrana circular tracionada com espessura variável para diferentes valores de  $\eta$ . ( $\delta = 1.10$ ).

Na Figura 5.12 apresentam-se os valores da espessura da membrana circular tracionada obtidos por integração numérica e por elementos finitos considerando diferentes valores do coeficiente de variação da espessura e  $\delta = 1.10$ . Apresenta-se também uma expressão analítica aproximada para a espessura obtida a partir da substituição da aproximação de  $r_o(\rho)$  (5.11) em  $H = h \rho / (r_o r_{o,\rho})$ , obtida através de (3.22) e (3.8).

Observa-se em todos os casos apresentados uma boa conformidade entre os resultados obtidos. Assim, a aproximação analítica é usada para a dedução das equações de movimento.



Figura 5.12 – Espessura (m) da membrana circular tracionada com espessura variável para diferentes valores de  $\eta$ . ( $\delta$  = 1.10)

### 5.2.2. Análise linear da vibração livre

Para a análise linear da vibração livre, parte-se da equação de movimento linear na direção transversal da membrana dada em (3.45) que, para a membrana circular com a variação da espessura, é dada pela seguinte equação diferencial parcial com coeficientes variáveis:

$$2C_{1}\left[\left(-1 + \frac{\rho^{2}}{r_{o}^{'4}r_{o}^{2}}\right) \frac{\partial^{2}w(\rho,\theta,t)}{\partial\rho^{2}} + \left(-\frac{1}{\rho^{2}} + \frac{\rho^{2}}{r_{o}^{'2}r_{o}^{4}}\right) \frac{\partial^{2}w(\rho,\theta,t)}{\partial\theta^{2}} + \left(-\frac{1}{\rho} - \frac{4\rho^{2}r_{o}^{"}}{r_{o}^{'5}r_{o}^{2}} + \frac{3\rho}{r_{o}^{'4}r_{o}^{2}} - \frac{2\rho^{2}}{r_{o}^{'3}r_{o}^{3}} + \frac{2\rho^{3}\eta}{r_{o}^{'4}r_{o}^{2}} - 2\rho\eta\right) \frac{\partial w(\rho,\theta,t)}{\partial\rho}\right] + \Gamma\left(\frac{\partial^{2}w(\rho,\theta,t)}{\partial t^{2}}\right) = 0$$
(5.15)

onde  $r_o(\rho)$  é dado por (5.11).

Como apresentado para vibração livre da membrana com variação da massa específica, a solução da equação de movimento linear (5.15) é obtida resolvendo a equação diferencial parcial pelo método de separação das variáveis  $\rho$ ,  $\theta$  e t na equação (5.15) e tem-se que o deslocamento transversal w escrito em função dessas variáveis como apresentado em (5.3).

Substituindo (5.3) em (5.15) obtém-se a seguinte equação de movimento linear, em função da direção radial, similar a equação diferencial Whittaker (Abramowitz e Stegun, 1972):

$$\left(-1 + \frac{\rho^{2}}{r_{o}^{'4} r_{o}^{2}}\right) \frac{d^{2}G(\rho)}{d\rho^{2}} + \left(-\frac{1}{\rho} - \frac{4\rho^{2} r_{o}^{"}}{r_{o}^{'5} r_{o}^{2}} + \frac{3\rho}{r_{o}^{'4} r_{o}^{2}} - \frac{2\rho^{2}}{r_{o}^{'3} r_{o}^{3}} + \frac{2\rho^{3}\eta}{r_{o}^{'4} r_{o}^{2}} - 2\rho\eta\right) \frac{dG(\rho)}{d\rho} + \left(\frac{\Gamma \omega_{mn}^{2}}{2C_{1}} - \frac{n^{2}\rho^{2}}{r_{o}^{'2} r_{o}^{4}} + \frac{n^{2}}{\rho^{2}}\right) G(\rho) = 0$$
(5.16)

Utilizando a solução da equação diferencial de Whittaker (Abramowitz e Stegun, 1972) juntamente com as condições de contorno do problema obtém-se a seguinte expressão para o deslocamento transversal da membrana circular:

$$w(\rho, \theta, t) = A_{mn} M_n \left( \frac{-1}{2} + \frac{\Gamma b_{mn}}{4B\eta}; \frac{n}{2}; \eta \rho^2 \right) \cos(n\theta) \cos(\omega_{mn} t)$$
 (5.17)

sendo:

$$B = \frac{R_f^3 (r_o'(R_o))^3}{2C_1 R_o (R_f^2 (r_o'(R_o))^4 - R_o^2)}$$
 (5.18)

onde  $A_{mn}$  corresponde à amplitude modal;  $M_n$ , à função hipergeométrica confluente Whittaker M apresentada em (5.7); m, ao número de semi-ondas radiais; n, ao número de ondas circunferenciais;  $b_{mn}$ , ao m-ésimo valor positivo onde a função Whittaker com  $\rho = R_o$  é nula;  $\omega_{mn}$  à freqüência de vibração e

$$r'_o(R_o) = \frac{dr_o}{d\rho}(R_o)$$
.

Substitui-se o deslocamento transversal (5.17) na equação de movimento (5.15), aplica-se o método de Galerkin e pela solução de um problema de autovalor obtém-se as freqüências naturais da membrana circular com espessura variável.

Como dito anteriormente, os deslocamentos radial u e circunferencial v são desprezíveis em relação ao deslocamento transversal w, sendo suas contribuições em termos de inércia e rigidez desprezadas na análise das vibrações transversais da membrana.

Para a solução via método dos elementos finitos, utiliza-se a mesma malha empregada na análise estática, com elementos sólidos tri-dimensionais C3D8RH e C3DH. Os resultados analíticos (AN) e obtidos por elementos finitos (MEF) são comparados na Tabela 5.3

Tabela 5.3 – Freqüências de vibração lineares (rad/s) para a membrana circular com espessura variável na direção radial.

| $m  n  \frac{\delta = 1.1}{AN}  \frac{\delta = 1.5}{MEF}  \frac{\delta = 2.0}{AN}  \frac{MEF}{MEF}  \frac{AN}{MEF}  \frac{MEF}{AN}  \frac{MEF}{MEF}  \frac{AN}{MEF}  \frac{MEF}{AN}  \frac{MEF}{AN}  \frac{MEF}{AN}  \frac{AN}{MEF}  \frac{MEF}{AN}  \frac{AN}{MEF}  \frac{AN}{AN}  \frac{MEF}{MEF}  \frac{AN}{MEF}  \frac{AN}{MEF}  \frac{AN}{MEF}  \frac{AN}{MEF}  \frac{MEF}{AN}  \frac{AN}{MEF}  \frac{MEF}{AN}  \frac{MEF}{MEF}  \frac{AN}{MEF}  \frac{MEF}{AN}  \frac{AN}{MEF}  \frac{AN}{AN}  \frac{MEF}{AN}  \frac{AN}{AN}  \frac{MEF}{AN}  \frac{AN}{AN}  \frac{MEF}{AN}  \frac{AN}{AN}  AN$ | 1   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $ \frac{\text{AN}}{\text{AN}} \frac{\text{MEF}}{\text{MEF}} \frac{\text{AN}}{\text{AN}} \frac{\text{MEF}}{\text{MEF}} \frac{\text{AN}}{\text{AN}} \frac{\text{MEI}}{\text{MEI}} $ $ 1  0  17,448  17,691  25,400  25,025  25,987  25,911 $ $ 1  1  29,763  29,472  42,314  42,738  44,096  44,866 $ $ 1  2  40,722  40,217  58,421  58,464  61,023  61,344 $ $ \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1   |
| 1 1 29,763 29,472 42,314 42,738 44,096 44,860 1 2 40,722 40,217 58,421 58,464 61,023 61,340 $\eta = -0.5$ $\delta = 1.1$ $\delta = 1.5$ $\delta = 2.0$ AN MEF AN MEF AN MEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 1 2 40,722 40,217 58,421 58,464 61,023 61,34 $\eta = -0.5$ m n $\frac{\delta = 1.1}{\text{AN MEF AN MEF AN MEF AN MEI}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   |
| $\eta = -0.5$ $m  n  \frac{\delta = 1.1}{\text{AN MEF AN MEF AN MEF AN MEI}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| $m$ $n$ $\frac{\delta = 1.1}{\text{AN MEF}}$ $\frac{\delta = 1.5}{\text{AN MEF}}$ $\frac{\delta = 2.0}{\text{AN MEF}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1   |
| m n AN MEF AN MEF AN MEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| AN MEF AN MEF AN MEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122 |
| 1 0 18.743 18.416 26.253 26.234 27.166 27.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m   |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1   |
| 1 1 30,434 30,225 43,434 43,743 45,080 45,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |
| 1 2 41,349 40,959 59,376 59,360 61,739 61,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |
| $\eta = 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| $m$ $n$ $\delta = 1.1$ $\delta = 1.5$ $\delta = 2.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| AN MEF AN MEF AN MEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   |
| AN MEF AN MEF AN MEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   |
| AN MEF AN MEF AN MEI<br>1 0 21,056 20,860 30,787 30,711 32,190 32,160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   |
| AN MEF AN MEF AN MEI  1 0 21,056 20,860 30,787 30,711 32,190 32,16  1 1 31,986 32,141 47,242 46,760 49,712 48,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| AN MEF AN MEF AN MEI  1 0 21,056 20,860 30,787 30,711 32,190 32,16  1 1 31,986 32,141 47,242 46,760 49,712 48,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| AN         MEF         AN         MEF         AN         MEI           1         0         21,056         20,860         30,787         30,711         32,190         32,16           1         1         31,986         32,141         47,242         46,760         49,712         48,80           1         2         42,331         42,381         62,125         61,605         65,172         64,25 $\eta = 0.75$ $m = n$ $\delta = 1.1$ $\delta = 1.5$ $\delta = 2.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m   |
| AN         MEF         AN         MEF         AN         MEI           1         0         21,056         20,860         30,787         30,711         32,190         32,16           1         1         31,986         32,141         47,242         46,760         49,712         48,80           1         2         42,331         42,381         62,125         61,605         65,172         64,25 $\eta = 0.75$ $m$ $n$ $\delta = 1.1$ $\delta = 1.5$ $\delta = 2.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   |

Apresenta-se na Figura 5.13 a variação da freqüência de vibração  $\omega_{10}$  com o coeficiente de tração radial ( $\delta$ ) da membrana para três diferentes leis de variação da espessura. Como nos casos anteriores, observa-se um grande aumento na freqüência natural para pequenos valores de  $\delta$  e que a curva tende ao valor constante da quando  $\delta \to \infty$ .



Figura 5.13 – Variação da freqüência de vibração (rad/s) em função do coeficiente de tração radial δ para diferentes leis de variação da espessura da membrana circular.

Na Figura 5.14 apresenta-se a influência do coeficiente de variação espessura ( $\eta$ ) nas freqüências de vibração. Observa-se um aumento na freqüência natural com o aumento do valor do coeficiente de variação da espessura  $\eta$ . Isso ocorre devido ao aumento da espessura para valores crescentes de  $\eta$  e, conseqüentemente, da rigidez da membrana, o que proporciona um aumento da freqüência de vibração. Além disso, verifica-se também que, para valores de  $\delta$  maiores que dois, a curva já é bem próxima da curva limite superior com  $\delta \rightarrow \infty$ .



Figura 5.14 – Variação da freqüência de vibração (rad/s) em função do coeficiente de variação da espessura, η.

## 5.2.3. Análise não linear da vibração livre

Como nos casos anteriores, com base nos resultados obtidos por elementos finitos, na análise das vibrações não lineares da membrana circular os deslocamentos u e v são desprezados e a equação de movimento não linear na direção transversal da membrana circular com espessura variável se reduz a:

$$-2\eta \rho \frac{\partial W}{\partial z_{,\rho}} - \frac{\partial}{\partial \rho} \left( \rho \frac{\partial W}{\partial z_{,\rho}} \right) - \frac{\partial}{\partial \theta} \left( \rho \frac{\partial W}{\partial z_{,\theta}} \right) + \rho \Gamma \frac{\partial^2 w}{\partial t^2} = 0$$
 (5.19)

Para a análise não linear aproxima-se a resposta não linear pela expressão (5.17) e utiliza-se o método de Galerkin-Urabe para se obter a relação freqüência de vibração-amplitude associada à menor freqüência natural (m = 1 e n = 0).

Essa relação é apresentada na Figura 5.15 para diferentes valores do coeficiente de variação da espessura  $\eta$ . Observa-se que para valores crescentes de  $\eta$  as freqüências de vibração aumentam deslocando a curva para a direita.



Figura 5.15 - Relação freqüência (rad/s) – amplitude (*m*) para vibração livre da membrana circular com diferentes valores de η.

Na Figura 5.16 ilustra-se a relação freqüência de vibração - amplitude modal para diferentes valores de  $\delta$  com  $\eta=0.5$ .

Observa-se nas Figura 5.15 e 5.16 que a variação da espessura não influencia no tipo do comportamento da membrana circular, apresentando o mesmo comportamento *hardening*, maior para as menores amplitudes de vibração e tendendo a um valor constante nas grandes amplitudes de vibração. Esse valor constante da freqüência de vibração refere-se ao valor da freqüência quando a  $\delta$  tende ao infinito. Além disso, observa-se que a não linearidade diminui com o

aumento do coeficiente de tração radial e que a resposta fica praticamente linear para um raio tracionado igual a duas vezes o raio indeformado ( $\delta = 2.0$ ).



Figura 5.16 - Relação frequência (rad/s)-amplitude (m) para vibração livre da membrana circular com diferentes valores de  $\delta$  ( $\eta$  = 0.5).

Na Figura 5.17 mostra-se a relação normalizada freqüência-deslocamento da membrana para um ponto de coordenadas (0; 0.5) da membrana indeformada. A freqüência de vibração foi normalizada com relação à freqüência natural de cada caso. Novamente observa-se que, quanto mais tracionada a membrana, menor o grau de não-linearidade da resposta.



Figura 5.17 - Relação normalizada frequência-deslocamento transversal (m) da membrana circular  $(\eta = 0.5)$ .

A relação normalizada freqüência – deslocamento transversal da membrana para diferentes valores de  $\eta$  e com  $\delta$  = 1.1 é apresentada na Figura 5.18. Observase que para pequenos deslocamentos as curvas com diferentes valores de  $\eta$  se

sobrepõe e que para grandes deslocamentos a não linearidade aumenta levemente para valores crescentes de  $\eta$ .



Figura 5.18 - Relação normalizada frequência (rad/s) — deslocamento transversal da membrana circular ( $\delta$  = 1.1).

A relação freqüência-deslocamento também é encontrada a partir da resposta no tempo obtida por elementos finitos juntamente com o metodologia proposta por Nandakumar e Chatterjee (2005) e é favoravelmente comparada com a relação obtida analiticamente, para um ponto de coordenadas (0.5; 0) da membrana indeformada, para duas variações da massa específica ( $\eta = \pm 0.5$ ). Esses resultados são apresentados na Figura 5.19.



Figura 5.19 - Relação freqüência de vibração (rad/s) - deslocamento transversal (m) para dois valores de  $\eta$  ( $\delta$ =1.10).

Como a membrana circular com coeficiente de variação da espessura  $\eta=0.5$  possui a mesma massa total que a membrana circular com coeficiente de variação de massa específica  $\kappa=0.595$ , comparam-se as suas relações normalizadas freqüência-deslocamento na Figura 5.20. A freqüência de vibração foi normalizada com relação à freqüência natural de cada caso e o deslocamento apresentado é no ponto de coordenadas (0.5;0) da membrana indeformada.



Figura 5.20 - Relação normalizada frequência – deslocamento transversal (*m*) da membrana circular com variação de espessura e massa específica.

Observa-se que, apesar da massa da membrana ser a mesma, os resultados não se sobrepõem, mas apresentam valores bem próximos e o mesmo comportamento global.

## 5.2.4. Análise não linear da vibração forçada

Na análise das vibrações forçadas considera-se a vibração transversal axissimétrica provocada por uma pressão excitadora uniforme dependente do tempo P(t). Além disso, da mesma forma que na vibração livre não linear, os campos de deslocamentos radial u e circunferencial v são desprezíveis em relação ao campo de deslocamento transversal w.

Dessa maneira, a equação de movimento não linear da membrana circular com espessura variável na direção transversal sob vibração forçada axissimétrica é dada por:

$$-2\eta \rho \frac{\partial W}{\partial z_{,\rho}} - \frac{\partial}{\partial \rho} \left( \rho \frac{\partial W}{\partial z_{,\rho}} \right) - \frac{\partial}{\partial \theta} \left( \rho \frac{\partial W}{\partial z_{,\theta}} \right) + \rho \Gamma \frac{\partial^2 w}{\partial t^2} - \zeta C_c \frac{\partial w}{\partial t} - P(t) r_o \frac{dr_o}{d\rho} = 0 (5.20)$$

onde a pressão excitadora é  $P(t) = P_o \cos(\Omega t)$ .

Como a vibração axissimétrica transversal é associada ao primeiro modo axissimétrico (n = 0 e m = 1), utiliza-se o deslocamento transversal (5.17).

Para obtenção dos resultados numéricos, consideram-se a força com amplitude de excitação  $P_o = 1 \ N/m^2$ . A relação frequência de vibração – amplitude é apresentada na Figura 5.21 para diferentes valores do coeficiente de variação da espessura  $\eta$ .



Figura 5.21 - Relação freqüência (rad/s) – amplitude (m) para vibração forçada da membrana circular com diferentes valores de  $\eta$  ( $\delta$  = 1.1).

As curvas de ressonância para diferentes valores de  $\delta$  são apresentadas na Figura 5.22 para uma variação da espessura com  $\eta$  = 0.5. Observa-se que, para um dado valor de  $\eta$ , as curvas tendem a um mesmo valor constante para grandes amplitudes de vibração.



Figura 5.22 – Curva de ressonância para a vibração forçada da membrana circular com espessura variável com diferentes  $\delta$ . ( $\eta = 0.5$ )

O método de continuação é utilizado para o cálculo dos diagramas de bifurcação do mapa de Poincaré da membrana circular tracionada que são apresentadas na Figura 5.23, para uma membrana com coeficiente de tração radial  $\delta = 1.1$ , amplitude da excitação  $P_o = 1 \ N/m^2$  e três diferentes valores de  $\eta$ .



Figura 5.23 – Diagrama de bifurcação do mapa de Poincaré. Coordenada de Poincaré  $A_{10}$  (*m*) como função da freqüência de excitação  $\Omega$  (rad/s) ( $P_0 = 1 \text{ N/m}^2$ ;  $\zeta = 0.05$ ;  $\delta = 1.1$ ).

Observa-se que dependendo do valor de  $P_o$  e  $\Omega$ , a membrana pode exibir uma ou três respostas e que os ramos estáveis e instáveis estão conectados por bifurcações do tipo nó-sela (NS nas figuras).

Na Figura 5.24 apresentam-se os diagramas de bifurcação do mapa de Poincaré para valores crescentes de  $P_o$ . Observa-se que, para valores crescentes da

magnitude da carga, a não-linearidade da solução aumenta e que todos os casos apresentam o mesmo tipo de comportamento *hardening*.



Figura 5.24 – Diagrama de bifurcação. Amplitude de vibração  $A_{10}$  (m) como função da freqüência de excitação  $\Omega$  (rad/s) ( $\zeta$  = 0.05;  $\delta$  = 1.1)

Na Figura 5.25 apresenta-se o diagrama de bifurcação em função da amplitude da excitação  $P_o$  para valores selecionados de  $\Omega$  na região principal de ressonância e dois valores de  $\eta$ . Observam-se em cada caso duas bifurcações do tipo nó-sela e que, para o caso onde  $\eta$  = -0.5, a não-linearidade da resposta é menor, levando a uma menor faixa de  $P_o$  onde se observa multiplicidade de soluções.



Figura 5.25 – Diagramas de bifurcação para valores selecionados da frequência de excitação. Coordenada de Poincaré  $A_{10}$  (m) como função da amplitude da excitação  $P_o$  ( $N/m^2$ ) ( $\zeta = 0.05$ ;  $\delta = 1.1$ ).

Na Figura 5.26 apresentam-se diagramas de bifurcação em função da amplitude da excitação, para diferentes valores de amortecimento. Observa-se que o amortecimento influencia na multiplicidade das soluções e nos saltos entre as soluções estáveis co-existentes diminuindo, com o aumento do amortecimento as regiões onde isso pode ocorrer.



Figura 5.26 – Diagramas de bifurcação com diferentes valores de amortecimento. Coordenada de Poincaré  $A_{10}$  (m) como função da amplitude da excitação  $P_o$  ( $N/m^2$ ) ( $\delta = 1.1$ )

Na Figura 5.27 apresenta-se diagramas de bifurcação em função da amplitude da excitação para diferentes valores da freqüência da excitação para a membrana com  $\delta = 1.1$  e dois valores de  $\eta$  ( $\pm 0.5$ ).



Figura 5.27 - Diagramas de bifurcação com diferentes valores da freqüência de excitação. Coordenada de Poincaré  $A_{10}$  em função da amplitude da excitação  $P_{o}$ . ( $\delta=1.1;\,\zeta=0.05$ )

Observa-se na Figura 5.27 que para os valores das freqüências de excitação na região principal de ressonância há duas soluções estáveis e uma instável para uma grande faixa de  $P_o$ . Para valores da freqüência de excitação distantes da região de ressonância só é observada uma resposta (estável).

A Figura 5.28 ilustra as das bacias de atração para valores de parâmetros escolhidos de tal modo que a resposta permaneça na região principal de ressonância onde ocorrem três soluções. A Figura 5.28 corresponde à projeção da bacia de atração no plano fase  $A_{10}$  x  $\dot{A}_{10}$  e as cores diferentes correspondem aos atratores distintos realçados nas bacias de atração pela cruz negra.

A cor cinza escuro corresponde à bacia de atração da oscilação de grande amplitude e a cor cinza claro corresponde à oscilação de pequena amplitude. Nota-se que na região principal de ressonância para a membrana com  $\eta$  = -0.5 a maioria das condições iniciais conduz a soluções que convergem ao atrator de grande amplitude, o que não ocorre para a membrana com  $\eta$  = 0.5.



Figura 5.28 – Bacia de atração no plano fase das condições iniciais  $A_{10}$  x  $\dot{A}_{10}$  ( $P_o = 1 \ N/m^2$ ;  $\zeta = 0.05$ ;  $\delta = 1.1$ ).