5 Membrana circular com massa específica e espessura variável

No estudo de membranas, quando se fala da variação da sua inércia, logo se recai na variação da sua massa específica ou da sua espessura. Na literatura encontram-se diversos estudos tratando da variação da massa específica de membranas circulares, principalmente na direção radial (Jabareen e Eisenberger, 2001; Bala Subrahmanyam e Sujith, 2001; Willatzen, 2002; Buchanan,2005). Todos estes resultados são restritos à análise das vibrações lineares usando a teoria elástica de membranas.

Por isso, inicialmente, estuda-se o caso da membrana circular de espessura constante, porém com variação da massa específica na direção radial e comparamse os resultados com os encontrados na literatura.

Posteriormente, estuda-se o problema da membrana circular com variação da espessura.

5.1. Variação da massa específica na direção radial da membrana circular

Neste problema considera-se que a massa específica da membrana varia na direção radial da seguinte maneira (Jabareen e Eisenberger, 2001; Bala Subrahmanyam e Sujith, 2001; Willatzen, 2002):

$$\Gamma(\rho) = \Gamma_o \left(1 + \kappa \rho^2\right) \tag{5.1}$$

onde Γ_o é um valor constante e κ é um valor constante conhecido que descreve a variação da massa específica ao longo do raio indeformado. Tem-se que a massa específica cresce do centro para o bordo quando $\kappa > 0$ e decresce quando $\kappa < 0$, como pode ser observado na Figura 5.1.

Figura 5.1 – Variação da massa específica normalizada ao longo da direção radial da membrana (Equação (5.1)).

A resposta estática neste caso é a igual à apresentada no item 4.1.

5.1.1. Análise linear da vibração livre

Para a análise linear das vibrações livres parte-se da equação de movimento na direção transversal da membrana (3.48) na qual é substituído o raio da membrana tracionada (4.1), obtendo-se a seguinte equação de movimento:

$$\frac{2C_1}{\Gamma_o(1+\kappa\rho^2)} \left(1 - \frac{1}{\delta^6}\right) \left(\frac{\partial^2 w}{\partial\rho^2} + \frac{1}{\rho}\frac{\partial w}{\partial\rho} + \frac{1}{\rho^2}\frac{\partial^2 w}{\partial\theta^2}\right) - \frac{\partial^2 w}{\partial t^2} = 0$$
(5.2)

O deslocamento transversal *w* é obtido através da transformação da equação de movimento linear (5.2) em uma equação diferencial que possue solução analítica. Empregando a separação das variáveis ρ , θ e t, tem-se que a solução da equação (5.2) pode ser escrita em função dessas variáveis da seguinte maneira:

$$w(\rho, \theta, t) = A_{mn} G(\rho) \cos(n\theta) \cos(\omega_{mn} t)$$
(5.3)

onde A_{mn} corresponde à amplitude modal; $G(\rho)$, à função em ρ do deslocamento transversal; *m*, ao número de semi-ondas radiais; *n*, ao número de ondas circunferenciais e ω_{mn} , à freqüência natural de vibração.

Substituindo (5.3) em (5.2), obtém-se a seguinte equação de movimento linear em função da direção radial:

$$\frac{d^2 G(\rho)}{d\rho^2} + \frac{1}{\rho} \frac{dG(\rho)}{d\rho} + \left(\frac{\Gamma_o (1 + \kappa \rho^2) \delta^6 \omega_{mn}^2}{2C_1 (\delta^6 - 1)} - \frac{n^2}{\rho^2}\right) G(\rho) = 0$$
(5.4)

A equação (5.4) é similar as equação diferencial Whittaker (Abramowitz e Stegun, 1972). Utilizando a solução da equação diferencial de Whittaker (Abramowitz e Stegun, 1972) juntamente com as condições de contorno do problema, obtém-se a seguinte solução analítica para o deslocamento transversal da membrana circular:

$$w(\rho,\theta,t) = A_{mn} M_n \left(\frac{-I}{4} \sqrt{\frac{K}{\kappa}}; \frac{n}{2}; \sqrt{K\kappa} \rho^2 I\right) \frac{1}{\rho} \cos(n\theta) \cos(\omega_{mn} t)$$
(5.5)

sendo:

$$K = \frac{\Gamma_o k_{mn} \delta^6}{2C_1(\delta^6 - 1)} \tag{5.6}$$

onde M_n é a função hipergeométrica confluente Whittaker do tipo M; k_{mn} é o *m*-ésimo valor positivo onde a função Whittaker com $\rho = R_o$ é nula.

A função hipergeométrica confluente Whittaker é uma forma alterada da função hipergeométrica, sendo uma forma alternativa de solução linearmente independente para as equações hipergeométricas confluentes dadas por (Wolfram mathworld, 2008):

$$M_{n}(\alpha;\beta;x) = x^{0.5+\beta} e^{-x/2} \sum_{i=0}^{\infty} \frac{(0.5+\beta-\alpha)_{i}}{(1+2\beta)_{i}} \frac{x^{i}}{i!}$$
(5.7)

onde ()_{*i*} é o símbolo Pochhammer dado por $(x)_i = x(x+1)\cdots(x+j+1)$ para $j \ge 0$ (Wolfram mathworld, 2008).

Substituindo o deslocamento transversal (5.5) na equação de movimento (5.2) obtém-se a freqüência natural da membrana circular com massa específica variável como:

$$\omega_{mn} = \sqrt{k_{mn}} \tag{5.8}$$

Os deslocamentos radial u e circunferencial v são desprezíveis em relação ao deslocamento transversal w, sendo suas contribuições em termos de inércia e rigidez desprezadas na análise das vibrações transversais da membrana.

As freqüências e os modos de vibração lineares foram calculados através da formulação analítica e comparados com os resultados obtidos pelo método dos elementos finitos.

Para a solução via método dos elementos finitos, utiliza-se uma malha com 2880 elementos de membrana M3D4R e M3D3 que gera um sistema com 8643

equações. A malha é discretizada com 40 elementos na direção radial e 72 na direção circunferencial, divididos em 40 conjuntos axissimétricos com 72 elementos cada. Para a variação da massa específica, cada conjunto de elementos recebe o valor dado na equação (5.1) onde ρ é a distância do centro da membrana até centro do elemento na direção radial.

Os resultados analíticos (AN) e obtidos por elementos finitos (MEF) para diferentes valores de κ em (5.1) são comparados na Tabela 5.1.

$\kappa = -0.5$								
т	n	$\delta = 1.1$		δ = 1.5		$\delta = 2.0$		
		AN	MEF	AN	MEF	AN	MEF	
1	0	20.859	20.925	31.989	30.283	33.230	31.458	
1	1	34.324	34.411	49.676	49.801	51.603	51.734	
1	2	42.773	42.581	61.903	68.141	64.305	70.786	

Tabela 5.1 – Freqüências de vibração lineares (rad/s) para a membrana circular com massa específica variável na direção radial.

		\mathbf{n}	~
K.	_		<u>٦</u>
•••	_	v.	

т	п	$\delta = 1.1$		$\delta = 1.5$		$\delta = 2.0$	
		AN	MEF	AN	MEF	AN	MEF
1	0	18.721	18.710	27.094	27.078	28.145	28.129
1	1	28.873	29.029	41.786	42.012	43.408	43.642
1	2	38.328	38.219	55.470	55.312	57.623	57.459

 $\kappa = 0.595$

т	n	$\delta = 1.1$		$\delta = 1.5$		$\delta = 2.0$	
		AN	MEF	AN	MEF	AN	MEF
1	0	18.543	18.529	26.837	26.816	27.878	27.856
1	1	28.648	28.625	41.461	41.427	43.069	43.035
1	2	37.705	37.591	54.568	54.404	56.685	56.515

Observa-se que os valores das freqüências obtidos pelos dois métodos são concordantes, tendo uma menor variação nos primeiros modos de vibração. Verifica-se também que as freqüências decrescem à medida que κ cresce, ou seja, aumenta a densidade no bordo da membrana.

Os modos de vibração possuem a mesma forma que os apresentados na Figura 4.5.

Os valores para o parâmetro de freqüência,
$$\overline{\omega} = \omega_{mn} \sqrt{\frac{\Gamma_o \,\delta^6}{2C_1(\delta^6 - 1)}}$$
, obtidos

com os resultados deste trabalho são favoravelmente comparados com os resultados apresentados por Bala Subrahmanyam e Sujith (2001) na Tabela 5.2. Os autores calculam esse parâmetro de freqüência analiticamente para membranas circulares completas e anulares com diversos coeficientes de heterogeneidade κ . Porém, os autores utilizam como resposta da equação diferencial uma função hipergeométrica de Kummer (Abramowitz e Stegun, 1972).

	$\overline{\omega} = \omega_{mn} \sqrt{\frac{1}{2}}$	$\frac{\overline{\Gamma_o \delta^6}}{C_1(\delta^6 - 1)}$	
к	Bala <i>et al</i> (2001)	AN	MEF
0.5	2.2819	2.2819	2.2806
1.0	2.1736	2.1736	2.1702
1.5	2.0778	2.0778	2.0728

Tabela 5.2 – Parâmetro da freqüência de vibração $\overline{\omega}$ para a membrana circular com massa específica variável na direção radial.

Na Figura 5.2 apresenta-se uma relação entre a freqüência de vibração e o coeficiente de tração radial (δ) da membrana para diferentes distribuições da massa específica. Observa-se um grande aumento na freqüência natural para pequenos valores de δ e que a curva tende a um valor constante quando $\delta \rightarrow \infty$, tal como no caso da membrana com densidade constante.

Figura 5.2 - Freqüência de vibração (rad/s) em função do coeficiente de tração radial δ para diferentes variações da massa específica da membrana circular.

Na Figura 5.3 apresenta-se uma relação entre a freqüência de vibração e o coeficiente de variação da massa específica (κ) da membrana para diferentes valores de δ . Observa-se uma diminuição na freqüência natural com o aumento do valor do coeficiente de variação da massa específica e que, para valores de δ maior que dois a curva já é bem próxima da curva com $\delta \rightarrow \infty$ que define o limite superior da freqüência.

Figura 5.3 - Freqüência de vibração (rad/s) em função do coeficiente de variação da massa específica (κ).

5.1.2. Análise não linear da vibração livre

Na análise das vibrações não lineares da membrana circular os deslocamentos $u \in v$ são desprezados e a equação de movimento não linear na

direção transversal da membrana circular com massa específica variável é dada por:

$$\begin{bmatrix} \frac{-4\rho^{6}w_{,\rho}^{2} + \rho^{4}\left(\delta^{2}\rho^{2} + w_{,\theta}^{2} + \rho^{2}w_{,\rho}^{2}\right)^{2}}{\delta^{2}\left(\delta^{2}\rho^{2} + w_{,\theta}^{2} + \rho^{2}w_{,\rho}^{2}\right)^{3}} - 1 \end{bmatrix} 2C_{1}\frac{\partial^{2}w}{\partial\rho^{2}} + \begin{bmatrix} \frac{-4\rho^{5}\delta^{2} - 8\rho^{4}w_{,\theta}w_{,\theta\rho} - 4\rho^{5}w_{,\rho}^{2}}{\delta^{2}\left(\delta^{2}\rho^{2} + w_{,\theta}^{2} + \rho^{2}w_{,\rho}^{2}\right)^{3}} + \\ \frac{5\rho^{3}}{\delta^{2}\left(\delta^{2}\rho^{2} + w_{,\theta}^{2} + \rho^{2}w_{,\rho}^{2}\right)^{2}} - \frac{1}{\rho} \end{bmatrix} 2C_{1}\frac{\partial w}{\partial\rho} + \begin{bmatrix} \frac{-4\rho^{2}w_{,\theta}^{2} + \rho^{2}\left(\delta^{2}\rho^{2} + w_{,\theta}^{2} + \rho^{2}w_{,\rho}^{2}\right)^{2}}{\delta^{2}\left(\delta^{2}\rho^{2} + w_{,\theta}^{2} + \rho^{2}w_{,\rho}^{2}\right)^{3}} - \frac{1}{\rho^{2}} \end{bmatrix} 2C_{1}\frac{\partial^{2}w}{\partial\theta^{2}} - \begin{bmatrix} \frac{\partial^{2}w}{\partial\theta^{2}} + \frac{\partial^{2}w}{\partial\theta^{2}} + \frac{\partial^{2}w}{\partial\theta^{2}} + \frac{\partial^{2}w}{\partial\theta^{2}} + \frac{\partial^{2}w}{\partial\theta^{2}} + \frac{\partial^{2}w}{\partial\theta^{2}} \end{bmatrix} C_{1}\frac{\partial^{2}w}{\partial\theta^{2}} + \frac{\partial^{2}w}{\partial\theta^{2}} + \frac{\partial^{2}w}{\partial\theta^{2$$

Para a análise não linear, aproxima-se o campo de deslocamentos transversais w pela Equação (5.5) e utiliza-se o método de Galerkin para se obter as equações diferenciais ordinárias não lineares no domínio do tempo.

Estuda-se as vibrações associadas à menor freqüência natural (m = 1 e n = 0), resolvendo-se a equação de movimento não linear (5.9). Obtém-se assim a relação freqüência de vibração-amplitude que é apresentada na Figura 5.4 para diferentes valores do coeficiente de variação da massa específica κ .

Figura 5.4 - Relação freqüência (rad/s)-amplitude (*m*) para vibração livre da membrana circular com diferentes valores de κ.

Na Figura 5.5 ilustra-se a relação freqüência de vibração - amplitude modal para diferentes valores da coeficiente de tração radial para $\kappa = 0.5$.

Figura 5.5 - Relação freqüência (rad/s) – amplitude (*m*) para vibração livre da membrana circular com diferentes valores de δ (κ = 0.5).

Observa-se nas Figura 5.4 e 5.5 o mesmo comportamento *hardening*, maior para as menores amplitudes de vibração e tendendo a um valor constante nas grandes amplitudes de vibração, em todos os casos apresentados. Esse valor constante da freqüência de vibração refere-se ao valor da freqüência quando a coeficiente de tração radial tende a infinito.

Verifica-se, também, que a membrana menos tracionada exibe uma resposta altamente não linear e que essa não linearidade diminui com o aumento do coeficiente de tração radial e a resposta fica praticamente linear para um raio tracionado igual a duas vezes o raio indeformado, como já foi observado no capítulo 4.

Além disso, observa-se que a variação da massa específica não influencia no tipo do comportamento não-linear da membrana circular. Para uma variação com aumento da massa específica, ao longo da direção radial ($\kappa > 0$), os valores das freqüências de vibração diminuem deslocando a curva para a esquerda. Enquanto que, para uma variação com diminuição da massa específica na direção radial ($\kappa < 0$) os valores das freqüências de vibração aumentam deslocando a curva para a direita.

Na Figura 5.6 mostra-se a relação normalizada freqüência-deslocamento da membrana para um ponto de coordenadas (0; 0.5) da membrana indeformada. A freqüência de vibração foi normalizada com relação à freqüência natural de cada caso. Novamente observa-se que quanto mais tracionada a membrana menor o grau de não-linearidade da resposta.

Figura 5.6 - Relação normalizada freqüência (rad/s) - deslocamento transversal (*m*) da membrana circular ($\kappa = 0.5$).

A relação freqüência – deslocamento também é obtida a partir da resposta no tempo, encontrada por elementos finitos, e utilizando a metodologia proposta por Nandakumar e Chatterjee (2005). Essa relação é favoravelmente comparada com a relação obtida analiticamente para um ponto de coordenadas (0.5; 0) da membrana indeformada, para duas variações da massa específica. Esses resultados são apresentados na Figura 5.7.

Para a solução por elementos finitos é utilizado um modelo com uma malha com 2880 elementos de casca S4R e S3 que gera um sistema com 8643 equações.

Figura 5.7 - Relação freqüência de vibração (rad/s)-deslocamento transversal (*m*) $(\delta = 1.1)$.

5.2. Variação da espessura na direção radial da membrana circular

Para a membrana com espessura variável considera-se uma variação na direção radial da configuração indeformada da seguinte maneira:

$$h(\rho) = h_o e^{\eta \rho^2} \tag{5.10}$$

onde h_o é um valor de referência e η é uma constante que descreve a variação da espessura ao longo do raio indeformado. Quando $\eta > 0$ tem-se que a espessura cresce do centro para o bordo e decresce quando $\eta < 0$, como pode ser observado na Figura 5.8.

Figura 5.8 – Variação da espessura normalizada ao longo da direção radial da membrana (Equação (5.10)).

5.2.1. Análise estática

Neste caso não há solução exata para a equação não-linear de equilíbrio. A solução estática da membrana com espessura variável sob deslocamento radial uniforme é obtida de forma aproximada através da integração numérica das equações (3.36) e (3.37), atendendo as condições de contorno (3.38) e (3.39).

As componentes de deslocamento estático circunferencial e transversal, β_0 e z_o respectivamente, são nulas.

Para a solução via método dos elementos finitos, utiliza-se, no programa comercial Abaqus®, 1440 elementos sólidos tri-dimensionais C3D8RH e C3DH que gera um sistema com 10086 equações. Ressalta-se que os resultados obtidos com os elementos sólidos foram comparados com resultados utilizando elementos

de membrana apresentando bons resultados. Optou-se pelo uso dos elementos sólidos para melhor representar a variação da espessura ao longo do raio da membrana.

Dessa forma, obtém-se a configuração tracionada da membrana circular para diferentes valores do coeficiente de tração radial (δ). Na Figura 5.9 apresenta-se a variação do comprimento radial tracionado obtido pela integração numérica (IN) e pelo método dos elementos finitos (MEF), para membranas circulares com três valores de δ e coeficiente de variação da espessura $\eta = 0.5$.

Figura 5.9 – Variação do comprimento radial tracionado da membrana circular com espessura variável ($\eta = 0.5$).

Para visualizar a influência da variação radial da espessura no raio tracionado (r_o), apresenta-se na Figura 5.10 a variação do deslocamento radial após a aplicação da tração radial na membrana circular para diferentes valores do coeficiente de variação da espessura. Os valores apresentados são os obtidos pela integração numérica.

Figura 5.10 – Variação do deslocamento radial (*m*) da membrana circular com espessura variável para diferentes valores de η .

Observa-se que a variação de $r_o(\rho)$ é levemente parabólica. A função que representa a variação da coordenada radial tracionada é então determinada através do método dos mínimos quadrados, sendo dada por:

$$r_o(\rho) = a_1 \rho^4 + a_2 \rho^3 + a_3 \rho^2 + a_4 \rho$$
(5.11)

onde *a_i* são constantes que dependem da configuração tracionada da membrana.

As membranas circulares apresentadas na Figura 5.10 possuem as seguintes distribuições radiais:

$$\begin{split} \eta &= 0.75 \quad r_{o}(\rho) = 0.010 \left(\frac{\rho}{R_{o}}\right)^{4} - 0.035 \left(\frac{\rho}{R_{o}}\right)^{3} + 0.002 \left(\frac{\rho}{R_{o}}\right)^{2} + 1.123 \left(\frac{\rho}{R_{o}}\right) \\ \eta &= 0.50 \quad r_{o}(\rho) = 0.010 \left(\frac{\rho}{R_{o}}\right)^{4} - 0.035 \left(\frac{\rho}{R_{o}}\right)^{3} + 0.002 \left(\frac{\rho}{R_{o}}\right)^{2} + 1.123 \left(\frac{\rho}{R_{o}}\right) \\ \delta &= 1.1 \\ \eta &= -0.50 \quad r_{o}(\rho) = 0.012 \left(\frac{\rho}{R_{o}}\right)^{4} - 0.004 \left(\frac{\rho}{R_{o}}\right)^{3} + 0.005 \left(\frac{\rho}{R_{o}}\right)^{2} + 1.078 \left(\frac{\rho}{R_{o}}\right) \\ \eta &= -0.75 \quad r_{o}(\rho) = 0.028 \left(\frac{\rho}{R_{o}}\right)^{4} - 0.009 \left(\frac{\rho}{R_{o}}\right)^{3} + 0.013 \left(\frac{\rho}{R_{o}}\right)^{2} + 1.067 \left(\frac{\rho}{R_{o}}\right) \\ \eta &= 0.75 \quad r_{o}(\rho) = 0.134 \left(\frac{\rho}{R_{o}}\right)^{4} - 0.218 \left(\frac{\rho}{R_{o}}\right)^{3} + 0.017 \left(\frac{\rho}{R_{o}}\right)^{2} + 1.637 \left(\frac{\rho}{R_{o}}\right) \\ \delta &= 1.5 \\ \eta &= -0.50 \quad r_{o}(\rho) = 0.080 \left(\frac{\rho}{R_{o}}\right)^{4} - 0.02 \left(\frac{\rho}{R_{o}}\right)^{3} + 0.032 \left(\frac{\rho}{R_{o}}\right)^{2} + 1.367 \left(\frac{\rho}{R_{o}}\right) \\ \eta &= -0.75 \quad r_{o}(\rho) = 0.186 \left(\frac{\rho}{R_{o}}\right)^{4} - 0.071 \left(\frac{\rho}{R_{o}}\right)^{3} + 0.081 \left(\frac{\rho}{R_{o}}\right)^{2} + 1.303 \left(\frac{\rho}{R_{o}}\right) \\ \end{split}$$

$$\eta = 0.75 \quad r_o(\rho) = 0.171 - \left(\frac{\rho}{R_o}\right)^4 - 0.564 \left(\frac{\rho}{R_o}\right)^3 + 0.046 \left(\frac{\rho}{R_o}\right)^2 + 2.347 \left(\frac{\rho}{R_o}\right)$$

$$\eta = 0.50 \quad r_o(\rho) = 0.080 - \left(\frac{\rho}{R_o}\right)^4 - 0.336 \left(\frac{\rho}{R_o}\right)^3 + 0.023 \left(\frac{\rho}{R_o}\right)^2 + 2.233 \left(\frac{\rho}{R_o}\right)$$

$$\delta = 2.0 \quad (5.14)$$

$$\eta = -0.50 \quad r_o(\rho) = 0.096 - \left(\frac{\rho}{R_o}\right)^4 + 0.104 \left(\frac{\rho}{R_o}\right)^3 + 0.036 \left(\frac{\rho}{R_o}\right)^2 + 1.764 \left(\frac{\rho}{R_o}\right)$$

$$\eta = -0.75 \quad r_o(\rho) = 0.225 - \left(\frac{\rho}{R_o}\right)^4 + 0.039 \left(\frac{\rho}{R_o}\right)^3 + 0.087 \left(\frac{\rho}{R_o}\right)^2 + 1.647 \left(\frac{\rho}{R_o}\right)$$

Substituindo a equação de $r_o(\rho)$, dada em (5.11), nas equações das tensões principais σ_1 e σ_2 , dadas em (3.30) e (3.31), obtém-se uma expressão analítica aproximada (AN) para as tensões. Essa expressão, juntamente com as soluções obtidas pela integração numérica (IN) e por elementos finitos (MEF) são favoravelmente comparadas na Figura 5.11 para uma membrana circular com $\delta = 1.10$ e diferentes valores do coeficiente de variação da espessura.

Observa-se na Figura 5.11 que as tensões principais variam de forma parabólica e que, para uma variação com aumento da espessura, ao longo da direção radial ($\eta > 0$), os valores das tensões principais diminuem. Enquanto que, para uma variação com diminuição da espessura na direção radial ($\eta < 0$) os valores das tensões principais aumentam. Finalmente observa-se que, quanto maior é a variação de η , maior é a variação das tensões ao longo da direção radial.

Figura 5.11 – Tensões principais (N/m^2) da membrana circular tracionada com espessura variável para diferentes valores de η . ($\delta = 1.10$).

Na Figura 5.12 apresentam-se os valores da espessura da membrana circular tracionada obtidos por integração numérica e por elementos finitos considerando diferentes valores do coeficiente de variação da espessura e $\delta = 1.10$. Apresenta-se também uma expressão analítica aproximada para a espessura obtida a partir da substituição da aproximação de $r_o(\rho)$ (5.11) em $H = h \rho / (r_o r_{o,\rho})$, obtida através de (3.22) e (3.8).

Observa-se em todos os casos apresentados uma boa conformidade entre os resultados obtidos. Assim, a aproximação analítica é usada para a dedução das equações de movimento.

Figura 5.12 – Espessura (*m*) da membrana circular tracionada com espessura variável para diferentes valores de η . ($\delta = 1.10$)

5.2.2. Análise linear da vibração livre

Para a análise linear da vibração livre, parte-se da equação de movimento linear na direção transversal da membrana dada em (3.45) que, para a membrana circular com a variação da espessura, é dada pela seguinte equação diferencial parcial com coeficientes variáveis:

$$2C_{1}\left[\left(-1+\frac{\rho^{2}}{r_{o}^{\prime 4}r_{o}^{2}}\right)\frac{\partial^{2}w(\rho,\theta,t)}{\partial\rho^{2}}+\left(-\frac{1}{\rho^{2}}+\frac{\rho^{2}}{r_{o}^{\prime 2}r_{o}^{4}}\right)\frac{\partial^{2}w(\rho,\theta,t)}{\partial\theta^{2}}+\right.\\\left.+\left(-\frac{1}{\rho}-\frac{4\rho^{2}r_{o}^{''}}{r_{o}^{\prime 5}r_{o}^{2}}+\frac{3\rho}{r_{o}^{\prime 4}r_{o}^{2}}-\frac{2\rho^{2}}{r_{o}^{\prime 3}r_{o}^{3}}+\frac{2\rho^{3}\eta}{r_{o}^{\prime 4}r_{o}^{2}}-2\rho\eta\right)\frac{\partial w(\rho,\theta,t)}{\partial\rho}\right]+$$

$$\left.+\Gamma\left(\frac{\partial^{2}w(\rho,\theta,t)}{\partial t^{2}}\right)=0$$
(5.15)

onde $r_o(\rho)$ é dado por (5.11).

Como apresentado para vibração livre da membrana com variação da massa específica, a solução da equação de movimento linear (5.15) é obtida resolvendo a equação diferencial parcial pelo método de separação das variáveis ρ , θ e t na equação (5.15) e tem-se que o deslocamento transversal *w* escrito em função dessas variáveis como apresentado em (5.3).

Substituindo (5.3) em (5.15) obtém-se a seguinte equação de movimento linear, em função da direção radial, similar a equação diferencial Whittaker (Abramowitz e Stegun, 1972):

$$\left(-1 + \frac{\rho^2}{r_o^{\prime 4} r_o^2} \right) \frac{d^2 G(\rho)}{d\rho^2} + \left(-\frac{1}{\rho} - \frac{4\rho^2 r_o^{\prime\prime}}{r_o^{\prime 5} r_o^2} + \frac{3\rho}{r_o^{\prime 4} r_o^2} - \frac{2\rho^2}{r_o^{\prime 3} r_o^3} + \frac{2\rho^3 \eta}{r_o^{\prime 4} r_o^2} - 2\rho \eta \right) \frac{dG(\rho)}{d\rho}$$

$$+ \left(\frac{\Gamma \omega_{mn}^2}{2C_1} - \frac{n^2 \rho^2}{r_o^{\prime 2} r_o^4} + \frac{n^2}{\rho^2} \right) G(\rho) = 0$$
(5.16)

Utilizando a solução da equação diferencial de Whittaker (Abramowitz e Stegun, 1972) juntamente com as condições de contorno do problema obtém-se a seguinte expressão para o deslocamento transversal da membrana circular:

$$w(\rho,\theta,t) = A_{mn} M_n \left(\frac{-1}{2} + \frac{\Gamma b_{mn}}{4B\eta}; \frac{n}{2}; \eta \rho^2\right) \cos(n\theta) \cos(\omega_{mn} t)$$
(5.17)

sendo:

$$B = \frac{R_f^3 (r_o'(R_o))^3}{2C_1 R_o \left(R_f^2 (r_o'(R_o))^4 - R_o^2\right)}$$
(5.18)

onde A_{nn} corresponde à amplitude modal; M_n , à função hipergeométrica confluente Whittaker M apresentada em (5.7); m, ao número de semi-ondas radiais; n, ao número de ondas circunferenciais; b_{mn} , ao m-ésimo valor positivo onde a função Whittaker com $\rho = R_o$ é nula; ω_{mn} à freqüência de vibração e

$$r_o'(R_o) = \frac{dr_o}{d\rho}(R_o).$$

Substitui-se o deslocamento transversal (5.17) na equação de movimento (5.15), aplica-se o método de Galerkin e pela solução de um problema de autovalor obtém-se as freqüências naturais da membrana circular com espessura variável.

Como dito anteriormente, os deslocamentos radial u e circunferencial v são desprezíveis em relação ao deslocamento transversal w, sendo suas contribuições em termos de inércia e rigidez desprezadas na análise das vibrações transversais da membrana.

Para a solução via método dos elementos finitos, utiliza-se a mesma malha empregada na análise estática, com elementos sólidos tri-dimensionais C3D8RH e C3DH. Os resultados analíticos (AN) e obtidos por elementos finitos (MEF) são comparados na Tabela 5.3

$\eta = -0.75$							
m	п	$\delta = 1.1$		$\delta = 1.5$		$\delta = 2.0$	
		AN	MEF	AN	MEF	AN	MEF
1	0	17,448	17,691	25,400	25,025	25,987	25,914
1	1	29,763	29,472	42,314	42,738	44,096	44,866
1	2	40,722	40,217	58,421	58,464	61,023	61,349
				$\eta = -0.5$			
100	n	δ=	1.1	δ=	1.5	$\delta = 2.0$	
m	п	AN	MEF	AN	MEF	AN	MEF
1	0	18,743	18,416	26,253	26,234	27,166	27,163
1	1	30,434	30,225	43,434	43,743	45,080	45,650
1	2	41,349	40,959	59,376	59,360	61,739	61,955
				$\eta = 0.5$			
т	п	δ=	1.1	$\delta = 1.5$		δ=	2.0
		AN	MEF	AN	MEF	AN	MEF
1	0	21,056	20,860	30,787	30,711	32,190	32,166
1	1	31,986	32,141	47,242	46,760	49,712	48,806
1	2	42,331	42,381	62,125	61,605	65,172	64,259
				$\eta = 0.75$			
m	и	δ=	1.1	δ=	1.5	δ=	2.0
m	п	AN	MEF	AN	MEF	AN	MEF
1	0	21,193	21,345	32,800	32,662	33,565	33,429
1	1	32,109	32,358	47,962	47,763	50,995	49,681
1	2	42,244	42,389	62,503	62,086	65,388	64,974

Tabela 5.3 – Freqüências de vibração lineares (rad/s) para a membrana circular com espessura variável na direção radial.

Apresenta-se na Figura 5.13 a variação da freqüência de vibração ω_{10} com o coeficiente de tração radial (δ) da membrana para três diferentes leis de variação da espessura. Como nos casos anteriores, observa-se um grande aumento na freqüência natural para pequenos valores de δ e que a curva tende ao valor constante da quando $\delta \rightarrow \infty$.

Figura 5.13 – Variação da freqüência de vibração (rad/s) em função do coeficiente de tração radial δ para diferentes leis de variação da espessura da membrana circular.

Na Figura 5.14 apresenta-se a influência do coeficiente de variação espessura (η) nas freqüências de vibração. Observa-se um aumento na freqüência natural com o aumento do valor do coeficiente de variação da espessura η . Isso ocorre devido ao aumento da espessura para valores crescentes de η e, conseqüentemente, da rigidez da membrana, o que proporciona um aumento da freqüência de vibração. Além disso, verifica-se também que, para valores de δ maiores que dois, a curva já é bem próxima da curva limite superior com $\delta \rightarrow \infty$.

Figura 5.14 – Variação da freqüência de vibração (rad/s) em função do coeficiente de variação da espessura, η.

5.2.3.

Análise não linear da vibração livre

Como nos casos anteriores, com base nos resultados obtidos por elementos finitos, na análise das vibrações não lineares da membrana circular os deslocamentos $u \, e \, v$ são desprezados e a equação de movimento não linear na direção transversal da membrana circular com espessura variável se reduz a:

$$-2\eta \rho \frac{\partial W}{\partial z_{,\rho}} - \frac{\partial}{\partial \rho} \left(\rho \frac{\partial W}{\partial z_{,\rho}} \right) - \frac{\partial}{\partial \theta} \left(\rho \frac{\partial W}{\partial z_{,\theta}} \right) + \rho \Gamma \frac{\partial^2 w}{\partial t^2} = 0$$
(5.19)

Para a análise não linear aproxima-se a resposta não linear pela expressão (5.17) e utiliza-se o método de Galerkin-Urabe para se obter a relação freqüência de vibração-amplitude associada à menor freqüência natural (m = 1 e n = 0).

Essa relação é apresentada na Figura 5.15 para diferentes valores do coeficiente de variação da espessura η . Observa-se que para valores crescentes de η as freqüências de vibração aumentam deslocando a curva para a direita.

Figura 5.15 - Relação freqüência (rad/s) – amplitude (m) para vibração livre da membrana circular com diferentes valores de η .

Na Figura 5.16 ilustra-se a relação freqüência de vibração - amplitude modal para diferentes valores de $\delta \operatorname{com} \eta = 0.5$.

Observa-se nas Figura 5.15 e 5.16 que a variação da espessura não influencia no tipo do comportamento da membrana circular, apresentando o mesmo comportamento *hardening*, maior para as menores amplitudes de vibração e tendendo a um valor constante nas grandes amplitudes de vibração. Esse valor constante da freqüência de vibração refere-se ao valor da freqüência quando a δ tende ao infinito. Além disso, observa-se que a não linearidade diminui com o

aumento do coeficiente de tração radial e que a resposta fica praticamente linear para um raio tracionado igual a duas vezes o raio indeformado ($\delta = 2.0$).

Figura 5.16 - Relação freqüência (rad/s)-amplitude (*m*) para vibração livre da membrana circular com diferentes valores de δ (η = 0.5).

Na Figura 5.17 mostra-se a relação normalizada freqüência-deslocamento da membrana para um ponto de coordenadas (0; 0.5) da membrana indeformada. A freqüência de vibração foi normalizada com relação à freqüência natural de cada caso. Novamente observa-se que, quanto mais tracionada a membrana, menor o grau de não-linearidade da resposta.

Figura 5.17 - Relação normalizada freqüência-deslocamento transversal (*m*) da membrana circular ($\eta = 0.5$).

A relação normalizada freqüência – deslocamento transversal da membrana para diferentes valores de η e com δ = 1.1 é apresentada na Figura 5.18. Observase que para pequenos deslocamentos as curvas com diferentes valores de η se sobrepõe e que para grandes deslocamentos a não linearidade aumenta levemente para valores crescentes de η .

Figura 5.18 - Relação normalizada freqüência (rad/s) – deslocamento transversal da membrana circular ($\delta = 1.1$).

A relação freqüência-deslocamento também é encontrada a partir da resposta no tempo obtida por elementos finitos juntamente com o metodologia proposta por Nandakumar e Chatterjee (2005) e é favoravelmente comparada com a relação obtida analiticamente, para um ponto de coordenadas (0.5; 0) da membrana indeformada, para duas variações da massa específica ($\eta = \pm 0.5$). Esses resultados são apresentados na Figura 5.19.

Figura 5.19 - Relação freqüência de vibração (rad/s) - deslocamento transversal (*m*) para dois valores de η (δ =1.10).

Como a membrana circular com coeficiente de variação da espessura $\eta = 0.5$ possui a mesma massa total que a membrana circular com coeficiente de variação de massa específica $\kappa = 0.595$, comparam-se as suas relações normalizadas freqüência-deslocamento na Figura 5.20. A freqüência de vibração foi normalizada com relação à freqüência natural de cada caso e o deslocamento apresentado é no ponto de coordenadas (0.5; 0) da membrana indeformada.

Figura 5.20 - Relação normalizada freqüência – deslocamento transversal (*m*) da membrana circular com variação de espessura e massa específica.

Observa-se que, apesar da massa da membrana ser a mesma, os resultados não se sobrepõem, mas apresentam valores bem próximos e o mesmo comportamento global.

5.2.4. Análise não linear da vibração forçada

Na análise das vibrações forçadas considera-se a vibração transversal axissimétrica provocada por uma pressão excitadora uniforme dependente do tempo P(t). Além disso, da mesma forma que na vibração livre não linear, os campos de deslocamentos radial u e circunferencial v são desprezíveis em relação ao campo de deslocamento transversal w.

Dessa maneira, a equação de movimento não linear da membrana circular com espessura variável na direção transversal sob vibração forçada axissimétrica é dada por:

$$-2\eta \rho \frac{\partial W}{\partial z_{,\rho}} - \frac{\partial}{\partial \rho} \left(\rho \frac{\partial W}{\partial z_{,\rho}} \right) - \frac{\partial}{\partial \theta} \left(\rho \frac{\partial W}{\partial z_{,\theta}} \right) + \rho \Gamma \frac{\partial^2 w}{\partial t^2} - \zeta C_c \frac{\partial w}{\partial t} - P(t) r_o \frac{dr_o}{d\rho} = 0$$
(5.20)

onde a pressão excitadora é $P(t) = P_0 \cos(\Omega t)$.

Como a vibração axissimétrica transversal é associada ao primeiro modo axissimétrico (n = 0 e m = 1), utiliza-se o deslocamento transversal (5.17).

Para obtenção dos resultados numéricos, consideram-se a força com amplitude de excitação $P_o = 1 N/m^2$. A relação freqüência de vibração – amplitude é apresentada na Figura 5.21 para diferentes valores do coeficiente de variação da espessura η .

Figura 5.21 - Relação freqüência (rad/s) – amplitude (*m*) para vibração forçada da membrana circular com diferentes valores de η ($\delta = 1.1$).

As curvas de ressonância para diferentes valores de δ são apresentadas na Figura 5.22 para uma variação da espessura com $\eta = 0.5$. Observa-se que, para um dado valor de η , as curvas tendem a um mesmo valor constante para grandes amplitudes de vibração.

Figura 5.22 – Curva de ressonância para a vibração forçada da membrana circular com espessura variável com diferentes δ . ($\eta = 0.5$)

O método de continuação é utilizado para o cálculo dos diagramas de bifurcação do mapa de Poincaré da membrana circular tracionada que são apresentadas na Figura 5.23, para uma membrana com coeficiente de tração radial $\delta = 1.1$, amplitude da excitação $P_o = 1 N/m^2$ e três diferentes valores de η .

Figura 5.23 – Diagrama de bifurcação do mapa de Poincaré. Coordenada de Poincaré A_{10} (*m*) como função da freqüência de excitação Ω (rad/s) ($P_0 = 1 \text{ N/m}^2$; $\zeta = 0.05$; $\delta = 1.1$).

Observa-se que dependendo do valor de P_o e Ω , a membrana pode exibir uma ou três respostas e que os ramos estáveis e instáveis estão conectados por bifurcações do tipo nó-sela (NS nas figuras).

Na Figura 5.24 apresentam-se os diagramas de bifurcação do mapa de Poincaré para valores crescentes de P_o . Observa-se que, para valores crescentes da

magnitude da carga, a não-linearidade da solução aumenta e que todos os casos apresentam o mesmo tipo de comportamento *hardening*.

Figura 5.24 – Diagrama de bifurcação. Amplitude de vibração $A_{10}(m)$ como função da freqüência de excitação Ω (rad/s) ($\zeta = 0.05$; $\delta = 1.1$)

Na Figura 5.25 apresenta-se o diagrama de bifurcação em função da amplitude da excitação P_o para valores selecionados de Ω na região principal de ressonância e dois valores de η . Observam-se em cada caso duas bifurcações do tipo nó-sela e que, para o caso onde $\eta = -0.5$, a não-linearidade da resposta é menor, levando a uma menor faixa de P_o onde se observa multiplicidade de soluções.

Figura 5.25 – Diagramas de bifurcação para valores selecionados da freqüência de excitação. Coordenada de Poincaré A_{10} (*m*) como função da amplitude da excitação P_o (*N/m*²) ($\zeta = 0.05$; $\delta = 1.1$).

Na Figura 5.26 apresentam-se diagramas de bifurcação em função da amplitude da excitação, para diferentes valores de amortecimento. Observa-se que o amortecimento influencia na multiplicidade das soluções e nos saltos entre as soluções estáveis co-existentes diminuindo, com o aumento do amortecimento as regiões onde isso pode ocorrer.

Figura 5.26 – Diagramas de bifurcação com diferentes valores de amortecimento. Coordenada de Poincaré A_{10} (*m*) como função da amplitude da excitação P_0 (*N/m*²) ($\delta = 1.1$)

Na Figura 5.27 apresenta-se diagramas de bifurcação em função da amplitude da excitação para diferentes valores da freqüência da excitação para a membrana com $\delta = 1.1$ e dois valores de η (±0.5).

Figura 5.27 - Diagramas de bifurcação com diferentes valores da freqüência de excitação. Coordenada de Poincaré A_{10} em função da amplitude da excitação P_o . ($\delta = 1.1$; $\zeta = 0.05$)

Observa-se na Figura 5.27 que para os valores das freqüências de excitação na região principal de ressonância há duas soluções estáveis e uma instável para uma grande faixa de P_o . Para valores da freqüência de excitação distantes da região de ressonância só é observada uma resposta (estável).

A Figura 5.28 ilustra as das bacias de atração para valores de parâmetros escolhidos de tal modo que a resposta permaneça na região principal de ressonância onde ocorrem três soluções. A Figura 5.28 corresponde à projeção da bacia de atração no plano fase $A_{10} \times \dot{A}_{10}$ e as cores diferentes correspondem aos atratores distintos realçados nas bacias de atração pela cruz negra.

A cor cinza escuro corresponde à bacia de atração da oscilação de grande amplitude e a cor cinza claro corresponde à oscilação de pequena amplitude. Nota-se que na região principal de ressonância para a membrana com $\eta = -0.5$ a maioria das condições iniciais conduz a soluções que convergem ao atrator de grande amplitude, o que não ocorre para a membrana com $\eta = 0.5$.

Figura 5.28 – Bacia de atração no plano fase das condições iniciais $A_{10} \ge \dot{A}_{10}$ ($P_o = 1 N/m^2$; $\zeta = 0.05$; $\delta = 1.1$).