Título: | EVALUATION OF REFINED MODELS FOR INSTABILITY AND VIBRATION OF TWO-DIMENSIONAL STRUCTURE | ||||||||||||||||||||||||||||||||||||
Autor: |
ELAINE CRISTINA RODRIGUES PONTE |
||||||||||||||||||||||||||||||||||||
Colaborador(es): |
RAUL ROSAS E SILVA - Orientador |
||||||||||||||||||||||||||||||||||||
Catalogação: | 19/FEV/2008 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11334&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11334&idi=2 |
||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.11334 | ||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||
This work consists in developing and evaluating classical
of finite element
models combined with additional polynomial functions, to
obtain critical loads of
instability and natural frequencies of plane structures,
and respective modes. The
objective is to search for a reliable technique to get
estimates of localized
deformations near to collapse. The Finite Elements method
is used in combination
with the classic method of Rayleigh-Ritz. As a basic
element for such study, the
rectangular element of Barber-Weaver is used, containing
four nodes, each one
with two translations and two independent rotations
(equivalents to a rotation and
an angular distortion). This element is enriched with
additional internal
displacement functions and with functions on the boundary,
forming general
polynomial series. These nodal functions are incorporated
in the energy
expressions leading to the establishment of elastic
stiffness, geometric, and mass
matrices. Such matrices allow the establishment of
generalized eigenvalue
problems to obtain critical loads and frequencies, and the
respective modes of
buckling and vibration. For the comparative numerical
studies presented in the
examples, several routines are implemented using software
Maple 9.0. The results
show that the methodology presented herein can be used in
the development of an
applicable technique to the ascertainment of instability
in global and located
modes, when there is a combination of geometric nonlinear
and material effects.
|
|||||||||||||||||||||||||||||||||||||
|