Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ANÁLISE DINÂMICA DE MEMBRANAS CIRCULARES HIPERELÁSTICAS
Autor: RENATA MACHADO SOARES
Colaborador(es): PAULO BATISTA GONCALVES - Orientador
DJENANE CORDEIRO PAMPLONA - Coorientador
Catalogação: 15/JUN/2009 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13790&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13790&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.13790
Resumo:
Nesta tese são estudadas as vibrações não-lineares de membranas circulares inicialmente tracionadas sujeitas a deformações finitas. O material da membrana é modelado como um material hiperelástico neo-Hookeano, isotrópico e incompressível. Baseada na teoria de deformações finitas para membranas hiperelásticas, uma formulação variacional é desenvolvida. Primeiro a solução da membrana sob tração radial uniforme é obtida e então as equações de movimento da membrana são obtidas pelo princípio de Hamilton. A partir das equações linearizadas, as freqüências e os modos de vibração da membrana são obtidos analiticamente. Os modos naturais são usados para aproximar o campo de deformações não-linear usando o método de Galerkin e modelos de ordem reduzida são deduzidos através do método de Karhunen-Loève e de métodos analíticos. Além disso, estuda-se a influência da variação da massa específica e da espessura ao longo da direção radial da membrana nas vibrações. A seguir a mesma metodologia é utilizada para uma membrana anular. Por fim, estudam-se as vibrações não-lineares da membrana anular acoplada a uma inclusão rígida que insere tensões de tração na membrana, pois, devido ao seu peso próprio, provoca deslocamentos estáticos transversais e axissimétricos na membrana. Os mesmos problemas são analisados por elementos finitos utilizando o programa comercial Abaqus.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
CAPÍTULO 6 PDF    
CAPÍTULO 7 PDF    
CAPÍTULO 8 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS PDF