XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: CALCULUS OF AFFINE STRUCTURES AND APPLICATIONS FOR ISOSURFACES Autor: MARIA DE ANDRADE COSTA E SILVA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
THOMAS LEWINER - ADVISOR
Nº do Conteudo: 18414
Catalogação: 04/10/2011 Liberação: 04/10/2011 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18414&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18414&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.18414
Resumo:
Título: CALCULUS OF AFFINE STRUCTURES AND APPLICATIONS FOR ISOSURFACES Autor: MARIA DE ANDRADE COSTA E SILVA
Nº do Conteudo: 18414
Catalogação: 04/10/2011 Liberação: 04/10/2011 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18414&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18414&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.18414
Resumo:
Differential Geometry provides a set of measures invariant under a set of
transformations, in particular rigid, affine, and projective. The invariants
by rigid motions are using almost all applications of computer graphics
and geometric modeling. The affine case, since it is more general, allows to
extend these tools. In this work, geometric properties are presented in the
case of parametric or implicit surfaces, in particular the affine metric, the conormal
and normal vectors, and the affine Gaussian and mean curvatures.
Some usual results of Euclidean geometry, as the Minkowski formula, are
extended for the affine case. This study allows to define estimators of affines
structure in the case of isosurfaces. Although, the direct calculation of
these structures greatly increases the number of operations and numerical
instabilities. A geometrical reduction is proposed obtaining a much simpler
and numerical stabler formulae. The geometrical properties are incorporated
in the Marching Cubes algorithms, then they are analyzed and discussed.