Título: | THERMODYNAMIC NONEXTENSIVITY, DISCRETE SCALE INVARIANCE AND ELASTOPLASTICITY: A STUDY OF A SELF-ORGANIZED CRITICAL GEOMECHANICAL NUMERICAL MODEL | |||||||
Autor: |
ARMANDO PRESTES DE MENEZES FILHO |
|||||||
Colaborador(es): |
EURIPEDES DO AMARAL VARGAS JUNIOR - Orientador |
|||||||
Catalogação: | 02/DEZ/2003 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=4249&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=4249&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.4249 | |||||||
Resumo: | ||||||||
This thesis aims at applying new concepts from solid state
physics and statistical mechanics - chaos theory and
fractal geometry - to the study of nonlinear dynamic
systems. More precisely, it deals with a two-dimensional
continuum elastoplastic Mohr-Coulomb model, commonly used
to simulate pressure-sensitive materials (e.g., soils,
rocks and concrete) subjected to stress-strain fields,
normally found in general soil or rock mechanics problems
(e.g., slope stability and underground excavations).
It is shown that such many-body system is spontaneously
driven to a state at the edge of chaos, called self-
organized criticality (SOC), capable of developing long-
range interactions in space and long-range memory in time.
A new entropic form proposed by C. Tsallis is presented and
shown that it is the suitable theoretical framework to deal
with these problems. Furthermore, the index q of the
Tsallis entropy, which measures the degree of non-
additivity of the system, is calculated, for the first
time, for an elastoplastic model. In addition, as is usual
in non-equilibrium systems with threshold dynamics, the
model changes its symmetry, from translational to fractal
(that is, self-similar), leading to what is called discrete
scale invariance. It is shown that this special type of
scale invariance, characterized by systematic oscillatory
deviations from the fundamental power-law behavior, can
be used to predict the failure of heterogeneous materials,
while the process is still being build-up, i.e., from
precursory signals, typical of progressive failure
processes. Specifically, this framework was applied, for
the first time, not only to the elastoplastic geomechanical
model, but to laboratory tests in sedimentary rocks as
well. Finally, it is interesting to realize that the above-
mentioned behaviors are also displayed by the binomial
multifractal function, known to adequately describe
multiplicative cascading processes.
|
||||||||