8 Elasto-plasticidade e invariância discreta de escala Resultados experimentais

8.1 Introdução

Este capítulo visa a apresentar os dados experimentais relativos às análises numéricas do modelo elasto-plástico no que concerne à presença da invariância discreta de escala, tal como indicado no capítulo 4.

Os parâmetros utilizados nas simulações foram descritos no capítulo 5, tomando-se o cuidado de se introduzir a heterogeneidade no modelo, tal como abordado nos tópicos 5.6.2 e 6.2.

Observou-se que, efetivamente, o modelo em estudo apresentou padrões oscilatórios sistemáticos, característicos de singularidade temporal em lei de potência e log-periodicidade.

Os ajustes dos dados empíricos pelo método de termalização estocástica, fundamentada na entropia de Tsallis, funcionaram a contento, tal como ocorrido anteriormente, para o caso da função binomial multifractal.

Os estudos também avaliaram o aspecto preditivo das expressões (4.17) e (4.18). Neste sentido, não apenas os resultados do modelo numérico foram investigados, mas também dados obtidos de ensaios de laboratório efetuados em materiais reais.

8.2 Descrição do comportamento do modelo elastoplástico pela invariância discreta de escala

Uma vez que as análises realizadas nos dois capítulos precedentes mostraram ser o sistema geomecânico em estudo auto-organizativo e nãoextensivo termodinamicamente, justificam-se análises adicionais no intuito de se averiguar se o mencionado modelo apresenta invariância discreta de escala.

Assim, o modelo geomecânico de Mohr-Coulomb foi investigado, necessitando-se, para tanto, conforme já se teve oportunidade de observar no capítulo 4, da introdução, no sistema elasto-plástico, de algum tipo de heterogeneidade.

A literatura [176] tem assinalado diferentes formas de se prover heterogeneidade a sistemas auto-organizados. No próprio item 6.2 deste trabalho, este problema foi abordado, ainda que de passagem.

Nesta tese, a heterogeneidade fez-se presente no modelo por intermédio unicamente do ângulo de atrito do material, que, de acordo com o estipulado no tópico 5.6.2, teve seus valores variando aleatoriamente em toda a extensão do material.

Cuidado especial foi dedicada à limitação imposta aos valores dos ângulos de dilatância e de atrito, pois, como assinalado anteriormente,os resultados foram muito influenciados pelo grau de heterogeneidade ditado por ϕ_m relativamente à ψ_m .

Quanto ao amortecimento, decidiu-se trabalhar com o sistema levemente subamortecido, na faixa compreendida entre o amortecimento crítico e 80% de seu valor.

Na qualidade de parâmetro a figurar no membro esquerdo das expressões (4.17) e (4.18), escolheu-se a energia cinética de um determinado nó da malha.

Mais pormenorizadamente, trabalhos [177,178] relacionados à aceleração sísmica singular antes de grandes eventos têm mostrado ser a energia cinética acumulada um parâmetro capaz de captar tal comportamento com bastante precisão. Isto se deve a que a energia cinética de uma onda num meio elástico é proporcional à sua amplitude, fato semelhante ocorrendo com a energia de deformação e a magnitude M desenvolvida por um terremoto.

O nó escolhido para o detalhamento das análises subseqüentes foi o de número 17 (dezessete), de coordenadas (5.50,0.50), localizando-se próximo à fronteira inferior da amostra de geometria quadrada.

Não houve, a bem da verdade, uma razão especial para a escolha deste ou daquele nó, sendo todos potencialmente utilizáveis nas análises subseqüentes. Evitou-se, tão-somente, a seleção de nós nos contornos sujeitos a deslocamentos prescritos, bem como muito próximos do centro de simetria da amostra quadrada, em razão da baixíssima velocidade aí desenvolvida.

A figura 8.1 mostra a variação temporal da energia cinética do nó 17. Nela se pode observar o caráter espasmódico de sua evolução, em que cada pico representa um evento singular ("terremoto"), em tudo muito semelhante à evolução pontuada (punctuated), proposta por Gould e Eldredge [7], e aos gráficos não-acumulados da função binomial multifractal, exibidos no capítulo 4.

Figura 8.1 – Energia cinética desenvolvida no nó 17.

A figura (8.2) mostra a energia cinética naquele mesmo nó, porém de forma acumulada, em que se pode notar a presença de patamares horizontais, nos quais a evolução parece momentaneamente interromper-se. Estes períodos de quiescência são freqüentemente denominados de *stasis*.

É interessante ressaltar que uma análise estatística da energia cinética mostrada na figura (8.1) e ilustrada na figura 8.3, sugere uma lei de potência para a sua distribuição, com expoente 2.39. Este expoente encontra-se dentro da faixa de valores dos estabelecidos pela lei de Gutemberg-Richer – tipicamente, de 1.5 a 2.5, para estatísticas *não-acumuladas* [179].

Figura 8.3 – Distribuição estatística em lei de potência da energia cinética para o nó 17. A inclinação da reta tracejada é igual a 2.39.

O desvio da referida lei de potência para valores elevados de energia é bastante comum [14]. Efetivamente, de acordo com o abordado no tópico (4.3), o expoente ζ , que figura no termo de energia da expressão (4.17), foi tomado nestas análises igual a 1 (hum), o que favorece, por conseguinte, eventos de grande magnitude. Eis porque tal desvio é normalmente denominado *efeito de terremoto característico* [14].

Assim, os resultados das figuras (8.1), (8.2) e (8.3) sugerem que o modelo geomecânico, para o rol de condições especificado no item 5.6.2, é autoorganizado criticamente, coexistindo, como se verá adiante, com a invariância discreta de escala.

A figura (8.1) tem a vantagem de permitir escolher, de antemão, possíveis candidatos ao tempo crítico t_c , a serem utilizados nas análises destinadas a prever os tempos de ruptura.

Este tópico, entretanto, estuda apenas a descrição dos comportamentos retratados por (4.17) e (4.18), razão pela qual, no procedimento de ajuste das curvas teóricas, considerou-se os referidos tempos *conhecidos* e *fixos*, não integrando, por conseguinte, o esquema de variáveis de ajuste.

As figuras 8.4 e 8.5 ilustram a janela de tempo escolhida para a realização da referida descrição. Naquela primeira pode-se notar, próximo ao tempo t = 185 s, a existência de 2 (dois) máximos de energia cinética acumulada bastante proeminentes, naturais candidatos ao posto de tempo crítico.

O menor deles - t = 182.004 s - foi escolhido como tempo crítico, a ser utilizado nos cálculos seguintes. O outro, localizado em t = 186.000 s e mais proeminente que o anterior, será importante nas discussões subseqüentes.

Figura 8.4 – Energia cinética no nó 17. Janela de tempo escolhida para estudo.

Figura 8.5 – Energia cinética acumulada no nó 17. Janela temporal escolhida para

estudo

O tempo inicial, a partir do qual todos os ajustes foram efetuados, foi t = 75.312 s. A escolha deste tempo procurou levar em conta o início efetivo de aumento gradual da energia com o tempo, bem como desconsiderou efeitos transientes que porventura pudessem estar presentes no início da série numérica.

A figura 8.6 apresenta o resultado da utilização da expressão em lei de potência pura para a energia cinética acumulada nó 17, estando os dados relativos ao ajuste abaixo relacionados.

- $A_1 = 1.3413$ E-02
- $B_1 = -1.0999 \text{E-}03$
- $\alpha_l = 5.0118$ E-01
- $t_c = 182.004$ s (fixo e conhecido)
- *Erro do ajuste* = 4.1397E-02

Figura 8.6 – Energia cinética acumulada no nó 17. Ajuste em lei de potência (expressão 4.18).

Por seu turno, a figura 8.7 ilustra a aplicação da expressão (4.17) à energia cinética acumulada no referido nó. Os valores numéricos relativos ao ajuste são fornecidos a seguir.

- A = 1.3494E-02
- B = -1.1128E-03
- $\alpha = 5.0006$ E-01
- $t_c = 182.004$ s (igualmente fixo e conhecido)
- C = -4.0832E-02
- $\lambda = 3.0004 \ (\omega = 5.7185)$
- $\phi = 4.1998$
- *Erro do ajuste* = 3.4577E-02

Figura 8.7 – Energia cinética acumulada no nó 17. Ajuste pela lei log-periódica (expressão 4.17).

Os resultados exibidos acima para ambas as invariâncias contínua e discreta são bastante instrutivos.

Inicialmente, nota-se que, como se poderia imaginar, o erro proporcionado pelo ajuste log-periódico foi inferior àquele fornecido pela lei de escala fundamental (4.18), sendo, entretanto, esta diferença muito pequena .

Isto leva a sugerir fortemente que alguma anomalia poderia estar afetando o desempenho da lei de escala discreta.

Realmente, tal como observado por Sornette [98], os ajustes decorrentes da aplicação de (4.17) a dados empíricos produzem, *em geral*, valores de tempo crítico próximos, porém *sistematicamente* acima, do tempo real de ruptura ou bifurcação.

Como, no caso em estudo, o tempo crítico foi *a priori* tornado fixo, o processo de ajuste pela expressão (4.17) foi levado a cabo em condições desfavoráveis.

Assim, as descrições do comportamento elasto-plástico pela invariância discreta de escala ficaram comprometidas, a menos que o tempo crítico seja considerado, ele próprio, um parâmetro de ajuste. É o que se analisará à continuação.

8.3 Previsões proporcionadas pelas invariâncias contínua e discreta de escala

Diferentemente do ítem anterior, desta feita as análises dos dados experimentais se concentrarão na utilidade prática que as invariâncias de escala contínua e discreta possam demonstrar na previsão de bifurcações/rupturas, tanto no modelo numérico, como em ensaios efetuados em materiais reais.

8.3.1 Resultados provenientes das análises numéricas realizadas no modelo geomecânico

De modo a se comprovar a afirmação anterior, proferida por Sornette, que abarca o aspecto preditivo da invariância discreta de escala, optou-se por se ajustar os dados empíricos da figura 8.5, tendo-se o cuidado, porém, de considerar o tempo crítico como um parâmetro a ser ajustado.

A figura 8.8 mostra o aspecto das curvas experimental e teórica, estando os dados concernentes ao ajuste proporcionado pela expressão (4.17) fornecidos a seguir.

Observa-se que, efetivamente, o ajuste pela lei log-periódica forneceu um erro bem inferior ao calculado anteriormente (figura 8.7), o que corrobora a opinião emitida pelo pesquisador francês, no que concerne à localização do tempo crítico.

Figura 8.8 – Energia cinética acumulada no nó 17. Ajuste pela lei log-periódica (expressão 4.17). Desta feita, o tempo crítico é um parâmetro de ajuste.

- *A* = 1.3763-02
- *B* = -9.5591E-04
- $\alpha = 5.3205 \text{E-}01$
- $t_c = 186.999 \text{ s}$
- *C* = -3.5216E-02
- $\lambda = 3.0002 \ (\omega = 5.7189)$
- $\phi = 3.0998$
- *Erro do ajuste* = 2.1609E-02

Portanto, o erro relativo envolvendo o tempo crítico real (182.004 s) e o avaliado (186.999 s) é de

$$\frac{186.999 - 182.004}{182.004} = 0.0274 \ (\cong 3.00\%)$$

que vem a ser uma diferença muitíssimo pequena!

Entretanto, observe-se que o tempo crítico avaliado acima, embora pouquíssimo distante do real, é praticamente idêntico ao outro tempo singular t = 186.000 s, já observado na figura 8.4!!

Em realidade, pode-se mesmo afirmar que este último é, verdadeiramente, o tempo crítico genuíno.

Assim, fazendo-se $t_c = 186.000$ s, o erro relativo passa a ser, agora

$$\frac{186.999 - 186.000}{186.000} = 0.0054 \ (\cong 0.60\%)$$

que é uma previsão praticamente exata e fantástica!!!

O que impressiona nas considerações acima, além do valor diminuto dos erros relativos calculados, é que a própria lei log-periódica considerou a possibilidade da bifurcação ocorrer num tempo crítico posterior a 182.004 s, embora, em momento algum, a informação sobre a existência de 186.000 s tivesse sido fornecida ao esquema de ajuste!

A par das considerações tecidas até o momento, cabe notar que os ajustes fundamentados na invariância discreta de escala devem ser, idealmente, também insensíveis a eventuais alterações nos pontos das séries temporais tomados como início dos ajustes.

De forma a verificar esta última assertiva, a janela temporal da figura 8.4 foi, mais uma vez, reduzida, adquirindo o aspecto da figura 8.9.

Figura 8.9 – Energia cinética desenvolvida no nó 17. Janela de tempo escolhida para

estudo.

Desta feita, o tempo inicial passou a ser 122.096 s, bem acima dos 75.312 s adotados anteriormente. Já o tempo crítico foi, novamente, considerado um parâmetro a ser ajustado.

A figura 8.10 ilustra o ajuste relativo a este novo ponto inicial, e os valores numéricos dos parâmetros da expressão (4.17) estão abaixo relacionados.

- A = 1.3612E-02
- *B* = -9.0948E-04
- $\alpha = 5.3204 \text{E-}01$
- $t_c = 186.999 \text{ s}$
- *C* = -3.5185E-02
- $\lambda = 3.0002 \ (\omega = 5.7189)$
- $\phi = 3.0998$
- *Erro do ajuste* = 1.1456E-02

Figura 8.10 – Energia cinética acumulada no nó 17. Ajuste pela lei log-periódica (expressão 4.17). O tempo crítico é um parâmetro de ajuste.

Observe-se que os parâmetros de ajuste pouco mudaram, muito embora, a maior proximidade do ponto crítico tenha implicado, naturalmente, na obtenção de um erro (1.1456E-02) inferior ao caso precedente (2.1609E-02).

Por conseguinte, pode-se afirmar, com base nos resultados provenientes das simulações numéricas no modelo heterogêneo elasto-plástico de Mohr-Coulomb, que a invariância discreta de escala, corporificada na expressão (4.17), com suas oscilações log-periódicas, são uma ferramenta poderosa para o estudo e previsão do comportamento de sistemas fora do equilíbrio com dinâmica de limiar.

8.3.2 Resultados provenientes de ensaios realizados em laboratório

Como se pôde observar no tópico 8.2, a previsão de efeitos catastróficos com o auxílio da lei log-periódica forneceu resultados sistematicamente superiores, quando comparados à invariância contínua de escala.

Este item tem por finalidade averiguar se tal se mantém, quando se analisam dados provenientes de ensaios efetuados em amostras reais.

Mais especificamente, o material escolhido para ensaio foi um folhelho proveniente dos campos de petróleo em águas profundas explorados pela Petrobrás, situados na Bacia de Campos, região norte do estado.

A amostra foi extraída do campo Marlim-Sul, de uma profundidade de 2589.80 m, e moldada segundo geometria cilíndrica, com diâmetro de 38 mm e altura de 79.8 mm, de acordo com o apregoado pelas normas da Sociedade Internacional de Mecânica de Rochas (ISRM), em seus conhecidos *suggested methods*.

O teste foi efetuado numa prensa MTS modelo 815, de propriedade do Centro de Pesquisas Leopoldo A. Miguez de Mello (CENPES, Petrobrás), localizado na Cidade Universitária, Ilha do Fundão. A prensa possui uma célula de carga com capacidade de 2500kN, além de ser dotada de célula triaxial, que permite a aplicação de tensões confinantes até 80 MPa.

A máquina de ensaio possibilita, ademais, a realização de testes que envolvam a aplicação de temperatura até 200 °C.

O ensaio escolhido para a verificação do caráter preditivo das invariâncias contínua e discreta foi o de compressão simples (ou compressão uniaxial), levado à ruptura por controle de carga, a uma taxa de 0.0009 kN/s.

Como se sabe, a aludida rocha sedimentar habitualmente apresenta o sério inconveniente de, ao ser exposta ar, sofrer ressecamento e desintegrar-se com alguma facilidade, dado o caráter hidrofílico e expansivo de seus argilo-minerais constituintes, relacionados ao grupo da esmectita (montmorilonita).

Assim, achou-se por bem colocar o corpo de prova cilíndrico ao abrigo da atmosfera, no interior da célula triaxial, e realizar o ensaio mantendo-o envolvido permanentemente em óleo mineral.

Durante um ensaio desta natureza costuma-se monitorar, a cada instante, dentre outros parâmetros, a tensão aplicada no topo da amostra, e as deformações específicas axiais, radiais e volumétricas.

A figura (8.11) apresenta uma curva típica tensão-deformação axial, correspondente ao referido ensaio. Após um ramo ascendente, o material alcança a ruína no máximo de resistência, terminando por romper completamente no ramo descendente, denominado pós-pico.

Figura 8.11 - Curva tensão – deformação do ensaio de compressão uniaxial em folhelho.

A figura (8.12) mostra a evolução temporal do deslocamento do atuador (Linear Variable Displacement Transducer - LVDT). Estas medidas dizem respeito à movimentação da base da amostra relativamente ao seu topo, e foram realizadas externamente à célula triaxial.

Figura 8.12 – Evolução temporal do deslocamento, medido pelo LVDT, no ensaio de compressão uniaxial em folhelho.

Observa-se a existência de oscilações nos dados do ensaio, culminando com uma singularidade em forma de ruptura bem pronunciada, típica daquelas discutidas no capítulo 4 e no parágrafo precedente. O tempo de ruptura para este ensaio foi de $t_c = 6336.49$ s.

De modo a se verificar a capacidade preditiva, baseada na hipótese das invariâncias contínua e discreta de escala para os dados do ensaio em folhelho, considerou-se que, da figura anterior, só se conhecia o trecho inicial da curva, especificamente, o que engloba duas oscilações bem distintas, iniciando-se em t = 1509.95s até t = 5641.00s.

Portanto, os dados experimentais são conhecidos com antecedência de até 11 min para a ruptura final, passando a ter o aspecto ilustrado na figura (8.13).

Figura 8.13 – Evolução temporal do deslocamento, medido pelo LVDT, no ensaio de compressão uniaxial em folhelho (dados incompletos).

8.3.2.1 Verificação da invariância contínua de escala (expressão 4.18)

Numa primeira abordagem, a expressão (4.18) foi aplicada aos dados da figura anterior, porém, desta feita, o tempo crítico fez parte do processo de ajuste (i.é., tornou-se uma variável a ser determinada).

A figura (8.14) mostra a aplicação da lei de potência pura aos dados experimentais.

Os parâmetros referentes ao ajuste dos dados pela aludida expressão, bem como o seu respectivo erro, acham-se expostos abaixo.

Figura 8.14 – Ajuste em lei de potência (expressão 4.18) aos dados de deslocamento da figura 8.13.

- $A_1 = 1.0014$
- $B_1 = -3.7027 \text{E-}03$
- $\alpha_l = 6.0910$ E-01
- $t_c = 5840.00 \text{ s}$
- *Erro do ajuste* = 2.7402E-01

Portanto, o ajuste dos dados incompletos pela lei de potência pura forneceu, para o tempo crítico, o valor 5840.00 s.

O erro relativo adquire, então, o valor

$$\frac{6336.49 - 5840.00}{6336.49} = 0.0784 \ (\cong 8\%)$$

que vem a ser uma previsão excepcionalmente boa!

Utilizando-se, agora, a totalidade dos dados empíricos disponíveis, a curva teórica, dada pelos 4 (quatro) parâmetros acima, poderá ser sobreposta à figura (8.12), o que fornece uma visão adequada dos dados comparados.

A figura seguinte (8.15) foi construída segundo esta estratégia.

Figura 8.15 – Extensão do ajuste pela expressão (4.18) à totalidade dos dados experimentais.

Por conseguinte, o ajuste, tendo como hipótese a invariância contínua de escala, forneceu um tempo crítico *anterior* ao tempo de ruptura real, sendo, porém, a diferença não muito grande, da ordem de 8%.

8.3.2.2 Verificação da invariância discreta de escala (expressão 4.17)

Procedendo-se analogamente ao tópico anterior, desta feita a averiguação se deu relativamente à hipótese da invariância discreta de escala.

A figura (8.16) ilustra o ajuste pela expressão (4.17) dos dados experimentais incompletos.

Figura 8.16 – Ajuste pela lei log-periódica (expressão 4.17) aos dados de deslocamento da figura 8.13.

O valor dos parâmetros de ajuste, bem como o erro decorrente deste procedimento, encontram-se abaixo.

- *A* = 1.0994
- *B* = -4.2189E-03
- $\alpha = 6.0623$ E-01
- $t_c = 6250.00 \text{ s}$
- *C* = -2.5138E-02
- $\lambda = 3.0000 \ (\omega = 5.7192)$

- $\phi = 4.5000$
- *Erro do ajuste* = 9.6379E-02

Portanto, o ajuste dos dados incompletos pela lei log-periódica forneceu para o tempo de ruptura o valor 6250.00 s, e o conseqüente erro relativo de

$$\frac{6336.49 - 6250.00}{6336.49} = 0.0136 \ (\cong 1.40\%)$$

o que vem a ser uma magnífica previsão!!!

Cabe assinalar, igualmente, que o próprio erro de ajuste dos dados experimentais foi incomparavelmente menor do que o dado pela lei de potência pura, sugerindo uma operação muito mais precisa.

Estendendo a previsão anterior, e sobrepondo a curva assim obtida à totalidade dos dados experimentais, obtém-se a figura (8.17) seguinte.

Figura 8.17 – Extensão do ajuste pela expressão (4.17) à totalidade dos dados experimentais.

Por conseguinte, pode-se notar da figura que o ajuste tendo por hipótese a invariância discreta de escala também forneceu um tempo crítico *anterior* ao real, sendo, porém, esta diferença, para todos os efeitos práticos, insignificante.

Assim, efetivamente, a invariância discreta de escala, tal como ditada pela expressão (4.17) restringe, como já se observou, muito mais fortemente a evolução temporal do modelo, que a lei potencial fundamental de escala (4.18).

Isto possibilitaria a previsão de futuros eventos de uma forma superior, com um grau de confiabilidade incomparavelmente maior.

Naturalmente, uma afirmação taxativa a este respeito exigiria a investigação de um número consideravelmente maior de ensaios. Entretanto, o autor acredita que os resultados experimentais supra-citados sugerem fortemente a existência de log-periodicidade, e a sua utilização prática para fins preditivos.