Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: FATIGUE CRACK PROPAGATION IN ARBITRARY 2D GEOMETRIES UNDER COMPLEX LOADING.
Autor: ANTONIO CARLOS DE OLIVEIRA MIRANDA
Colaborador(es): LUIZ FERNANDO CAMPOS RAMOS MARTHA - Orientador
Catalogação: 13/MAI/2003 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=3496&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=3496&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.3496
Resumo:
A reliable and cost effective two-phase methodology is proposed to predict fatigue crack propagation in generic two-dimensional structural components under complex loading. First, the fatigue crack path and its stress intensity factor are calculated in a specialized finite- element software, using small crack increments. Numerical methods are used to calculate the crack propagation path, based on the computation of the crack incremental direction, and the stress-intensity factors KI, from the finite element response. Then, an analytical expression is adjusted to the calculated KI(a) values, where a is the length along the crack path. This KI(a) expression is used as an input to a powerful general purpose fatigue design software based on the local approach, developed to predict both initiation and propagation fatigue lives under complex loading by all classical design methods, including the SN, the eN and the IIW (for welded structures) to deal with crack initiation, and the da/dN to treat propagation problems. In particular, its crack propagation module accepts any KI expression and any da/dN rule, using the DKrms or the cycle-by-cycle propagation methods to deal with one and twodimensional crack propagation under complex loading. If requested, this latter method may include overload-induced crack retardation effects. This two-phase methodology is experimentally validated by fatigue tests on compact tension and bending single edge notch specimens, modified with holes positioned to attract or to deflect the cracks.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
REFERENCES PDF