Título: | FUNCTIONALLY GRADED MATERIALS ON THE DYNAMIC BEHAVIOR OF FLEXIBLE RISERS | |||||||
Autor: |
JUAN CARLOS ROMERO ALBINO |
|||||||
Colaborador(es): |
CARLOS ALBERTO DE ALMEIDA - Orientador IVAN FABIO MOTA DE MENEZES - Coorientador |
|||||||
Catalogação: | 17/ABR/2012 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19447&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19447&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.19447 | |||||||
Resumo: | ||||||||
This work presents a new co-rotational beam element formulation to model
the geometric three-dimensional static and dynamic nonlinear analysis of risers of
Functionally Graded Materials (FGM). The material modulus of elasticity and
density of the beam are assumed to vary through the pipe cross-section thickness
following a power law function. In the spatial discretization of the riser
equilibrium equations, a two node beam element based on Euler-Bernoulli theory
is considered, with cubic Hermitian interpolation functions used for nodal
displacement interpolations and element kinematics, all referred to a co-rotation
coordinate system attached to the element local frame. In the element model,
geometric non-linear effects are considered, involving large displacements and
rotations but small strains. The motion of the riser results from the following
applied forces: self weight, buoyancy, hydrodynamic (due to maritime waves,
currents and added mass inertia), prescribed displacements (at the floating
platform), action of floaters and seabed-structure interactions. Step-by-step time
integration of the equilibrium equations is performed with HHT (Hilbert-Hughes-
Taylor) algorithm and the numerical solution is obtained using the Newton-
Raphson iterative technique. The methodology has been implemented and various
sample results presented, that highlight the behavior of functionally graded
material beams as compared to homogeneous beams. Applications related to
practical offshore engineering situations are also considered.
|
||||||||