

Juan Carlos Romero Albino

Materiais com Gradação Funcional no Comportamento Dinâmico de Linhas Flexíveis

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Prof. Carlos Alberto de Almeida Co-Orientador: Dr. Ivan Fábio Mota de Menezes

> Rio de Janeiro Dezembro de 2011

Juan Carlos Romero Albino

Materiais com Gradação Funcional no Comportamento Dinâmico de Linhas Flexíveis

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Carlos Alberto de Almeida Orientador Departamento de Engenharia Mecânica – PUC-Rio

> Dr. Ivan Fábio Mota de Menezes Co-Orientador Tecgraf – PUC-Rio

Prof. José Luiz de França Freire Departamento de Engenharia Mecânica – PUC-Rio

Prof. Marco Antonio Meggiolaro Departamento de Engenharia Mecânica – PUC-Rio

> Dr. Márcio Martins Mourelle CENPES / PETROBRAS

Prof. Luiz Carlos da Silva Nunes Universidade Federal Fluminense

Prof. Lavinia Maria Sanabio Alves Borges Universidade Federal do Rio de Janeiro

Prof. José Eugênio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 07 de dezembro de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Juan Carlos Romero Albino

Graduou-se em Engenharia Mecânica-Elétrica na UNPRG (Universidad Nacional Pedro Ruiz Gallo, Lambayeque-Perú) em 2002. Obteve seu Título de Mestre em Engenharia Mecânica em 2006 pela Pontificia Universidad Católica del Perú. Atualmente dedica-se à pesquisa na área de análise da dinâmica não-linear de linhas flexíveis.

Ficha Catalográfica

Romero Albino, Juan Carlos

Materiais com gradação funcional no comportamento dinâmico de linhas flexíveis / Juan Carlos Romero Albino ; orientador: Carlos Alberto de Almeida ; co-orientador: Ivan Fábio Mota de Menezes. – 2011.

168 f. : il. ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Incluí referências bibliográficas.

1. Engenharia mecânica – Teses. 2. Linhas marítimas. 3. Material com gradação funcional. 4. Análise tridimensional dinâmica. 5. Movimentos com grandes deslocamentos. I. Almeida, Carlos Alberto de. II. Menezes, Ivan Fábio Mota de. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título. PUC-Rio - Certificação Digital Nº 0621138/CB

À memória de minhas avós Maria Olga e Zoila Rosa.

Agradecimentos

A Deus, por ter me dado saúde, determinação e perseverança para me confrontar com as dificuldades que surgiram durante o período de realização de minha tese de doutorado.

Muito em especial ao Prof. Carlos Alberto de Almeida, pela confiança depositada em mim para a realização deste trabalho, orientação e dedicação esmerada ao longo do tempo que durou meu doutorado.

Ao Dr. Ivan Fábio Mota de Menezes, pelas sugestões e co-orientação no desenvolvimento deste trabalho de tese, sobretudo na ajuda com as implementações numéricas no programa Anflex e nos testes numéricos.

Ao Prof. Glaucio H. Paulino por ter sugerido o tema da minha tese e acompanhado o andamento da mesma através dos Professores Ivan e Almeida.

A Petrobras por ter facilitado o programa Anflex para que o modelo numérico proposto neste trabalho fosse implementado e pelo apoio financeiro no tempo adicional após os quatro anos previstos de estudos necessários para a conclusão da minha tese de doutorado.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Aos professores do Departamento de Engenharia Mecânica da PUC-Rio pelos ensinamentos que contribuíram com minha formação acadêmica.

Aos membros da banca de tese de doutorado pelas sugestões que ajudaram a enriquecer este trabalho.

A todos os amigos que com apoio e amizade tornaram minha permanência no Brasil muito agradável.

Aos meus pais, Juan e Graciela, aos meus irmãos, Victor e Zoila, e aos demais familiares, por terem incentivado minha vinda ao Brasil e estarem sempre ao meu lado nos bons e maus momentos, apoiando-me com compreensão necessária para que pudesse chegar ao fim de mais esta etapa de estudos.

À minha namorada Cecília Leal Himmelseher e à sua mãe, Maristela, pelo apoio e motivação no período de conclusão desta tese.

Resumo

Albino, Juan Carlos; Almeida, Carlos Alberto de. **Materiais com Gradação Funcional no Comportamento Dinâmico de Linhas Flexíveis.** Rio de Janeiro, 2011. 168p. Tese de Doutorado - Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

Neste trabalho um novo elemento de viga co-rotacionado é apresentado para a análise não-linear geométrica tridimensional, estática e dinâmica, de linhas marítimas de Materiais com Gradação Funcional (MGF). Assume-se que o módulo de elasticidade e a massa específica do material da viga variam ao longo da espessura da seção transversal tubular de acordo com uma lei de potência. Na discretização espacial das equações de equilíbrio, a linha marítima é representada por um elemento de viga de dois nós, com base nas hipóteses do modelo para vigas de Euler-Bernoulli, em que polinômios cúbicos de Hermite são utilizados na interpolação dos deslocamentos nodais e a cinemática do movimento é descrita através de grandezas referidas a um sistema coordenado local co-rotacionado. Consideram-se não linearidades geométricas envolvendo grandes deslocamentos e rotações, mas com pequenas deformações. Nas equações de movimento da linha marítima, são consideradas as seguintes influencias: do peso próprio, do empuxo, dos carregamentos hidrodinâmicos (devidos às ações de ondas, correntes e forças de massa adicional), dos deslocamentos prescritos (junto à fixação da embarcação), da ação de flutuadores e das forças de interação solo-estrutura. A integração temporal das equações de equilíbrio é realizada utilizando-se o algoritmo de discretização HHT (Hilbert-Hughes-Taylor) e a solução numérica obtida com a técnica iterativa de Newton Raphson. A metodologia numérica foi implementada e diversos exemplos são apresentados e discutidos enfatizando-se as diferenças de comportamento estrutural entre os modelos de viga com MGF e com material homogêneo. Resultados referentes a situações práticas da engenharia offshore são também tratados nos exemplos.

Palavras-chave

Linhas marítimas; material com gradação funcional; análise tridimensional dinâmica; movimentos com grandes deslocamentos.

Abstract

Albino, Juan Carlos; Almeida, Carlos Alberto de (Advisor). **Functionally Graded Materials on the Dynamic Behavior of Flexible Risers.** Rio de Janeiro, 2011. 168p. DSc. Thesis - Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

This work presents a new co-rotational beam element formulation to model the geometric three-dimensional static and dynamic nonlinear analysis of risers of Functionally Graded Materials (FGM). The material modulus of elasticity and density of the beam are assumed to vary through the pipe cross-section thickness following a power law function. In the spatial discretization of the riser equilibrium equations, a two node beam element based on Euler-Bernoulli theory is considered, with cubic Hermitian interpolation functions used for nodal displacement interpolations and element kinematics, all referred to a co-rotation coordinate system attached to the element local frame. In the element model, geometric non-linear effects are considered, involving large displacements and rotations but small strains. The motion of the riser results from the following applied forces: self weight, buoyancy, hydrodynamic (due to maritime waves, currents and added mass inertia), prescribed displacements (at the floating platform), action of floaters and seabed-structure interactions. Step-by-step time integration of the equilibrium equations is performed with HHT (Hilbert-Hughes-Taylor) algorithm and the numerical solution is obtained using the Newton-Raphson iterative technique. The methodology has been implemented and various sample results presented, that highlight the behavior of functionally graded material beams as compared to homogeneous beams. Applications related to practical offshore engineering situations are also considered.

Keywords

Risers; functionally graded material; three-dimensional dynamic analysis; large displacement motions.

Sumário

1 Introdução	21
1.1. Caracterização do Problema	21
1.2. Objetivos	31
2 Materiais com Gradação Funcional	32
2.1. Características Físicas	32
2.2. Lei de Potência	40
3 Formulação do Problema da Dinâmica de <i>Risers</i> Empregando-se o	
Método dos Elementos Finitos	43
3.1. Fenomenologia do Comportamento Estrutural de Risers	43
3.2. Análise Incremental Não-Linear	45
3.3. Considerações Básicas da Formulação Lagrangeana	
Co-rotacionada	47
3.4. Sistemas de Referência na Formulação do Elemento de Pórtico	
Co-rotacionado	48
3.5. Deformações no Elemento de Viga Considerado	51
3.5.1. Matriz de transformação do sistema global para o sistema local	
fixo	51
3.5.2. Atualização do sistema de coordenadas convectivo associado	
aos nós	52
3.5.3. Atualização do sistema de coordenadas local móvel	54
3.5.4. Cálculo das Deformações Angulares	55
3.6. Hipóteses Básicas da Formulação	56
3.7. Cinemática de Deformação do Elemento de Viga Considerado	57
3.8. Formulação de Elementos Finitos	62
4 Implementação Numérica	64
4.1. Discretização da Estrutura	64
4.2. Matrizes e Vetores dos Esforços Externos e Internos	69

4.2.1. Equações constitutivas e campo de tensões	69
4.2.2. Matriz de rigidez linear e vetor de forças internas	71
4.2.3. Matriz de rigidez geométrica	73
4.2.4. Matriz de inércia	76
4.2.4.1. Matriz de inércia consistente incluindo inércia de rotação	76
4.2.4.2. Matriz de inércia concentrada (lumped mass model)	78
4.2.5. Vetor de esforços externos	80
4.2.5.1. Consideração das pressões externas e interna	80
4.2.5.2. Cargas hidrodinâmicas	83
4.2.5.3. Forças de interação riser-solo	85
5 Testes Numéricos	89
5.1. Análise Estática	90
5.1.1. Análises Estáticas usando à Formulação Lagrangeana Total	90
5.1.1.1. Viga em balanço de seção reta composta submetida à carga	
transversal na extremidade em pequenos deslocamentos	90
5.1.1.2. Viga em balanço submetida à carga axial excêntrica em	
pequenos deslocamentos	94
5.1.2. Análises Estáticas Usando a Formulação Co-Rotacionada	96
5.1.2.1. Pórtico de Lee	96
5.1.2.2. Viga em balanço de seção tubular submetida a momento	
fletor constante	102
5.1.2.3. Coluna composta submetida a uma carga axial excêntrica	106
5.1.2.4. Coluna esbelta de MGF submetida a uma carga compressiva	
(Condição Engastada-Livre)	108
5.1.2.5. Viga curva em balanço submetida à carga concentrada fora	
do plano	112
5.1.2.6. Riser em balanço submetido a carregamento hidrostático	114
5.1.2.7. <i>Riser</i> vertical sob carregamento de correnteza e submetido a	
força de tração no topo	116
5.2. Análise Dinâmica	119
5.2.1. Frequências naturais de viga de seção tubular de MGF e	
bi-material	119

5.2.2. Viga reta em balanço submetida a uma carga transversal	
uniformemente distribuída	121
5.2.3. Viga reta em balanço de MGF submetida a uma carga	
transversal uniformemente distribuída	124
5.2.4. Viga curva em balanço submetida à carga transversal	
concentrada na extremidade	130
5.2.5. <i>Riser</i> flexível submerso submetido à ação do movimento de	
navio e de ondas	132
5.2.6. Riser rígido em catenária simples submetido a carregamento o	le
correnteza e movimento prescrito no topo	137
6 Conclusões e Sugestões	149
6.1. Sugestões para trabalhos futuros	151
7 Referências Bibliográficas	153
Apêndices	162
Apêndice A – Medidas de deformação de Green-Lagrange	162
Apêndice B – Formulação Lagrangeana Total	166

Lista de figuras

Figura 1.1 – Evolução da tecnologia brasileira em águas	
profundas [64].	22
Figura 1.2 – Linha flexível aderente [78].	23
Figura 1.3 – Típica linha flexível não-aderente [27].	23
Figura 1.4 – <i>Riser</i> na configuração catenária livre.	25
Figura 1.5 – <i>Riser</i> na configuração <i>Lazy-wave</i> .	25
Figura 1.6 – <i>Riser</i> na configuração <i>Steep-wave</i> .	26
Figura 1.7 – <i>Riser</i> na configuração <i>Lazy-s</i> .	26
Figura 1.8 – <i>Riser</i> na configuração <i>Steep-s</i> .	27
Figura 1.9 – <i>Riser</i> na configuração <i>Pliant-wave</i> .	27
Figura 1.10 – Configuração híbrida de <i>Risers</i> [26].	29
Figura 2.1 – Características dos MGF [43].	33
Figura 2.2 – MGF particulado caracterizado pelas frações de volume	
das fases constituintes graduadas numa direção (vertical) [2].	34
Figura 2.3 – Microestrutura do tipo "esqueleto" de um MGF [91].	34
Figura 2.4 – (a) MGF Lamelar NiCrAlY-PSZ: processado por técnica	
de spray de plasma [73]; (b) MGF Colunar ZrO ₂ -Y ₂ O ₃ : revestimento de	
barreira térmica com porosidade graduada, processada por técnica de	
deposição física de vapor por feixe eletrônico [39].	34
Figura 2.5 – Fração volumétrica de cerâmica, para valores distintos do	
expoente n na eq.(2.1).	36
Figura 2.6 – Representação gráfica do material n=0.2 [25].	36
Figura 2.7 – Representação gráfica do material para n=2.0 [25].	37
Figura 2.8 – Imagem em um MEV para um MGF YSZ/NiCrAIY [40].	38
Figura 2.9 – Variação do Módulo de Elasticidade da liga TiC-Ni $_3$ Al	
em uma viga de seção tubular, com $$ TiC no raio interno e Ni $_3$ Al no	
raio externo, respectivamente.	41
Figura 2.10 – Variação do Módulo de Elasticidade da liga TiC-Ni ₃ Al	
em uma viga de seção tubular, com TiC no raio externo e Ni₃Al no	
raio interno, respectivamente.	42

Figura 3.1 – Carregamentos sobre um <i>riser</i> .	44
Figura 3.2 – Procedimento incremental iterativo para um grau de	
liberdade.	46
Figura 3.3 – Descrição do movimento de um elemento de viga	
usando-se um Sistema de Coordenadas Co-rotacionado.	49
Figura 3.4 – Ângulos de Euler	52
Figura 3.5 – Rotações do sistema de coordenadas convectivo	
associado aos nós.	53
Figura 3.6 – Cinemática do modelo de pórtico co-rotacionado.	58
Figura 3.7 – Vetor rotação.	59
Figura 4.1 – Elemento de viga e variáveis de estado nodais.	64
Figura 4.2 – Funções de forma Hermitianas.	66
Figura 4.3 – Representação equivalente das pressões externas e	
interna num segmento de <i>riser</i> .	81
Figura 4.4 – Curva força-deslocamento bi-linear usada no solo.	86
Figura 4.5 – Comportamento elasto-plástico do efeito da fricção [35].	87
Figura 5.1 – Viga em balanço de seção transversal composta.	91
Figura 5.2 – Dimensões e sistema coordenado na seção transversal	
da viga composta.	91
Figura 5.3 – Tensões axiais e cisalhantes ao longo da espessura na	
seção engastada da viga em balanço.	94
Figura 5.4 – Viga engastada com carga axial excêntrica.	94
Figura 5.5 – Tensões axiais ao longo da espessura para a viga em	
balanço com carga axial excêntrica.	95
Figura 5.6 – Dados de entrada para o Pórtico de Lee.	97
Figura 5.7 – Relações Força-Deslocamentos horizontal e vertical do	
ponto de aplicação da carga P, empregando a Formulação	
Lagrangiana Total com controle de carga.	98
Figura 5.8 – Comparação dos resultados fornecidos pelas	
Formulações Lagrangeana Total e Co-rotacionada (presente estudo).	98
Figura 5.9 – Configurações deformadas do Pórtico de Lee.	99
Figura 5.10 – Equilíbrio de forças para as configurações deformadas	
BeC.	99

Figura 5.11 – Equilíbrio de forças para as configurações deformadas	
DeE.	100
Figura 5.12 – Configuração deformada A e elemento de calculo das	
tensões.	100
Figura 5.13 – Distribuição de tensões agindo no plano 1 – 1' sobre a	
seção transversal.	101
Figura 5.14 – Distribuição de tensões agindo no plano 2 – 2' sobre a	
seção transversal.	101
Figura 5.15 – Viga em balanço considerada na análise.	102
Figura 5.16 – Configurações de equilíbrio estáticas para distintos	
carregamentos de flexão.	103
Figura 5.17 – Deslocamentos e rotações na extremidade da viga em	
balanço, em função do momento aplicado – Resultados	
Parametrizados.	104
Figura 5.18 – Tensões normais em dois planos de corte na seção	
transversal: (a) vertical e (b) inclinado 45° (M = 0.6M*,	
$E(r)=404(r/r_0)^{0.639}GPa).$	105
Figura 5.19 – Tensões normais em dois planos de corte na seção	
transversal: (a) vertical e (b) inclinado 45° (M = 0.6M*, E(r)=220(r/r ₀) ⁻	
^{0.643} GPa).	105
Figura 5.20 – Coluna composta com carga axial excêntrica.	106
Figura 5.21 – Deslocamentos normalizados do ponto de aplicação da	
carga.	107
Figura 5.22 – Configurações deformadas da coluna composta para	
diferentes parâmetros de carga λ.	108
Figura 5.23 – Coluna Engastada-Livre de MGF considerada na	
análise.	109
Figura 5.24 – Deslocamentos e rotações na extremidade da coluna	
Engastada-Livre, em função da carga aplicada – Resultados	
Parametrizados.	110
Figura 5.25 – Configurações deformadas da coluna de MGF para	
diferentes valores da carga P aplicada.	110

Figura 5.26 – Tensões normais no engastamento em dois planos	
de corte na seção transversal: (a) vertical e (b) inclinado 45°	
$(\lambda = 2.19, E(r)=404(r/r_0)^{0.639}GPa).$	111
Figura 5.27 – Tensões normais no engstamento em dois planos	
de corte na seção transversal: (a) vertical e (b) inclinado 45°	
$(\lambda = 2.19, E(r)=220(r/r_0)^{-0.643}GPa).$	112
Figura 5.28 – Características geométricas, do material (homogêneo)	
e do carregamento para a viga considerada na análise.	112
Figura 5.29 – Deslocamentos na extremidade livre da viga para	
diferentes incrementos de carga.	113
Figura 5.30 – Configurações espaciais da viga curva.	114
Figura 5.31 – Propriedades mecânicas e geométricas do riser em	
balanço e carga vertical na extremidade.	115
Figura 5.32 – Carregamento aplicado na análise numérica.	115
Figura 5.33 – Configurações deformadas do riser em balanço com	
diferente condições de carregamento.	116
Figura 5.34 – <i>Riser</i> vertical com tração no topo.	117
Figura 5.35 – Sequência de carregamento usado na análise.	118
Figura 5.36 – Configurações deformadas do <i>riser</i> considerando	
carregamentos de correnteza de perfil uniforme e magnitudes de	
1.0 e 2.0 m/s, respectivamente.	118
Figura 5.37 – Detalhes da seção tubular compósita considerada na	
análise numérica.	119
Figura 5.38 – Primeira até a quinta frequência natural à flexão para	
a viga compósita considerada.	121
Figura 5.39 – Viga em balanço com carregamento uniforme	
considerada na análise.	122
Figura 5.40 – Análise estática não-linear da viga em balanço com	
carregamento uniforme.	122
Figura 5.41 – Resposta dinâmica não linear da viga em balanço com	
carregamento uniforme.	123
Figura 5.42 – Propriedades físicas, geométricas e carregamento	
aplicado na análise da viga em balanço	124

Figura 5.43 – Análise estática não-linear da viga em balanço com	
carregamento uniforme, resultados para três materiais diferentes.	125
Figura 5.44 – Caso A: Resposta dinâmica linear e não-linear para	
a viga em balanço de material TiC, a) deslocamento vertical e	
b) rotação da extremidade livre.	127
Figura 5.45 – Caso B: Resposta dinâmica linear e não-linear para	
a viga em balanço de MGF, a) deslocamento vertical e b) rotação	
da extremidade livre.	128
Figura 5.46 – Caso C: Resposta dinâmica linear e não-linear para	
a viga em balanço de material Ni $_3$ Al, a) deslocamento vertical e	
b) rotação da extremidade livre.	129
Figura 5.47 – Viga curvada em balanço considerada na análise.	130
Figura 5.48 – Resposta dinâmica da viga curvada em balanço	
submetida a uma carga na ponta de 300 lb.	131
Figura 5.49 – Instalação do <i>riser</i> em catenária simples e	
discretização do modelo de elementos finitos.	132
Figura 5.50 – Processo de instalação do <i>riser</i> .	134
Figura 5.51 – Diagrama de momento fletor estático do riser em	
repouso.	135
Figura 5.52 – Reação vertical no nó 1 (conectado à torre submarina).	136
Figura 5.53 – Reação vertical no nó 71 (conectado ao navio).	136
Figura 5.54 – <i>Riser</i> rígido em catenária.	138
Figura 5.55 – Carregamento aplicado na análise estática.	139
Figura 5.56 – Configurações estáticas do <i>riser</i> .	140
Figura 5.57 – Envoltória dos raios de curvaturas ao longo do riser	
para 3 intervalos de tempo: 30-37s, 43-50s e 57-63s.	142
Figura 5.58 – Força axial no sistema local co-rotacionado para o	
elemento 890 (região do <i>riser</i> próxima ao TDP).	143
Figura 5.59 – Momento fletor em relação ao eixo Z-global para o	
nó 891.	144
Figura 5.60 – Momento fletor em relação ao eixo Z-global para o	
nó 906.	145

Figura 5.61 – Momento fletor em relação ao eixo Z-global para o	
nó 909.	145
Figura 5.62 – Configurações deformadas para o <i>riser</i> com material	
homogêneo e com MGF no instante t = 33.25s (Gráficos sem escala e	
com a região do TDP limitada por	
$X \in [900, 1450]m, Y \in [-550, -350]m, Z \in [0, 100]m$).	146
Figura 5.63 – Configurações deformadas para o riser com material	
homogêneo e com MGF no instante t = 47.15s (Gráficos sem escala e	
com a região do TDP limitada por	
$X \in [900, 1450]m, Y \in [-550, -350]m, Z \in [0, 100]m$).	147
Figura 5.64 – Configurações deformadas para o riser com material	
homogêneo e com MGF no instante t = 59.60s (Gráficos sem escala e	
com a região do TDP limitada por	
$X \in [900, 1450]m, Y \in [-550, -350]m, Z \in [0, 100]m$).	148
Figura B.1 – Configurações inicial e deformada da viga no plano.	166
Figura B.2 – Forças internas e momento fletor sobre a seção	
transversal da viga.	167

Lista de tabelas

Tabela 1.1 – Descrição das camadas de uma Linha Flexível	
não-aderente [27].	24
Tabela 4.1 – Forma Integral e correspondente Forma Matricial	
dos termos da Eq.(4.9)	68
Tabela 5.1 – Resultados analíticos para as tensões na seção	
engastada da viga em balanço.	93
Tabela 5.2 – Resultados analíticos para as tensões axiais da viga	
em balanço com carga execentrica.	95
Tabela 5.3 – Geometria, propriedades físicas e coeficientes	
hidrodinâmicos para o problema analisado.	133
Tabela 5.4 – Reações nos suportes no <i>riser</i> em catenária.	134
Tabela 5.5 – Características físicas e geométricas do riser e dos	
flutuadores.	138
Tabela 5.6 – Carregamentos de correnteza e do offset estático do	
<i>riser</i> rígido.	139
Tabela 5.7 - Movimento imposto ao ponto de conexão com o navio.	141
Tabela 5.8 – Raios de curvatura mínimos obtidos na análise do <i>riser</i> .	143

Lista de Símbolos

BL	Matriz de transformação deformação-deslocamento linear
B _{NL}	Matriz representativa da variação da parcela não linear da
	compatibilidade geométrica dos incrementos de deformação
С	Matriz constitutiva do material
C_{Dt}, C_{Dn}	Coeficientes de arrasto tangencial e normal,
	respectivamente
C _M	Coeficiente de inércia
\boldsymbol{e}_0	Configuração inicial da estrutura
$e_{\rm C}$	Configuração co-rotacionada da estrutura
$e_{\rm D}$	Configuração deformada da estrutura
d	Velocidade da estrutura
$\dot{\mathbf{d}}_{c}$	Velocidade da correnteza
$\dot{\mathbf{d}}_r$	Velocidade relativa entre o fluido e a estrutura
$\dot{\mathbf{d}}_{w}$	Velocidade das partículas do fluido devido às ondas
D	Matriz de amortecimento
е	Termo linear do vetor deformação
E	Módulo de elasticidade do material
ĒĀ	Rigidez axial equivalente
ĒĪ	Rigidez flexional equivalente
${}^{t+\Delta t}_{0}\mathbf{f}^{S}, {}^{t+\Delta t}_{0}\mathbf{f}^{B}$	Vetores de forças de superfície e de corpo por unidade de
	área e por unidade de volume, respectivamente
g	Aceleração da gravidade
G	Módulo de cisalhamento do material
GJ	Rigidez torsional equivalente
H ^(m)	Matriz de interpolação dos deslocamentos nodais do
	elemento (m)
κ _L	Matriz de rigidez linear

K _{NL}	Matriz de rigidez geométrica
М	Matriz de inércia
${}^{t}\mathbf{R}, {}^{t+\Delta t}\mathbf{R}$	Vetor de esforços externos nos instantes t e t+Δt no sistema
	global de coordenadas
U, Ü, Ü	Vetores incremento de deslocamento, velocidade e
	aceleração
r _i	Raio interno da estrutura esbelta
r _o	Raio externo da estrutura esbelta
X, Y, Z	Coordenadas no sistema global
α	Parâmetro de não-homogeneidade relativo à massa
	específica do material
β	Parâmetro de não-homogeneidade relativo ao módulo de
	elasticidade do material
γr	Peso específico do <i>riser</i>
Υw	Peso específico d'água do mar
Υf	Peso específico do fluido interno
η	Termo não-linear do vetor deformação
μ _a , μ _t	Coeficientes de atrito do solo nas direções axial e
	transversal do riser, respectivamente
ν	Coeficiente de Poisson
$\tau, \hat{\tau}$	Matriz e vetor das tensões de Cauchy, respectivamente
Ψ	Pseudo-vetor rotacional