Título: | LOW-DIMENSIONAL REDUCED ORDER MODELS FOR THE NONLINEAR DYNAMIC ANALYSIS OF BEAMS AND PLANE FRAMES | ||||||||||||||||||||||||||||||||||||||||
Autor: |
ELVIDIO GAVASSONI NETO |
||||||||||||||||||||||||||||||||||||||||
Colaborador(es): |
PAULO BATISTA GONCALVES - Orientador DEANE DE MESQUITA ROEHL - Orientador |
||||||||||||||||||||||||||||||||||||||||
Catalogação: | 15/FEV/2008 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11327&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11327&idi=2 |
||||||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.11327 | ||||||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||||||
One of the fundamental results in classical mechanics is
that linear systems
with n degrees of freedom have n orthogonal vibration
modes and n natural
frequencies which are independent of the vibration
amplitude. Any motion of the
system can be obtained as a linear combination of these
modes. This does not hold
for nonlinear systems in which case amplitude dependent
vibrations modes and
frequencies must be obtained. One way of obtaining these
informations for
arbitrary structures is to use a nonlinear finite element
software. However, this is a
cumbersome and time consuming procedure. A better approach
is to derive a
consistent low dimensional model from which the nonlinear
frequencies and mode
shapes can be derived. In this work a procedure for the
derivation of low
dimensional models for slender beams and portal frames is
proposed. The
differential equations of motion are derived from the
application of variational
techniques to a nonlinear energy functional. The linear
vibration modes are used
as a first approximation for the nonlinear modes. The
Galerkin and Ritz methods
are used in the model for the spatial reduction and the
harmonic balance method
for the reduction in time domain. This allows the analysis
of the free and forced
(damped or undamped) vibrations of the structure in non-
linear regime. However
nonlinear resonance curves usually presents limit points.
To obtain these curves, a
methodology for the solution of non-linear equations based
on an arc-length
procedure is derived. Based on the finite element methods
and using the basic
ideas of the perturbation theory, a correction for the
nonlinear vibration modes is
derived. The influence of boundary conditions, geometric,
and force parameters
on the beam response is analyzed. The behavior of L frames
is studied. For this
kind of frame, the influence of axial loading and
geometric parameters on the
response is studied. The results are compared with
analytical solutions found in
the literature.
|
|||||||||||||||||||||||||||||||||||||||||
|