Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ÍNDICES DE ENLAÇAMENTO ASSINTÓTICO PARA AÇÕES DE RK EM VARIEDADES RIEMANNIANAS COMPACTAS
Autor: JOSE LUIS LIZARBE CHIRA
Colaborador(es): PAUL ALEXANDER SCHWEITZER - Orientador
Catalogação: 10/FEV/2006 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7761&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7761&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.7761
Resumo:
Arnold no seu trabalho The asymptotic Hopf Invariant and its applications de 1986, considerou sobre um domínio (ômega maiúsculo) compacto de R3 com bordo suave e homología trivial campos X e Y de divergência nula e tangentes ao bordo de (ômega maiúsculo) e definiu o índice de enlaçamento assintótico lk(X; Y ) e o invariante de Hopf associados a X e Y pela integral I(X; Y ) igual a (integral em ômega maiúsculo de alfa produto d-beta), onde (d-alfa) igual a iX-vol e (d-beta) igual a iy-vol, e mostrou que I(X; Y ) igual a lk(X; Y ). Agora, no presente trabalho estenderemos estas definições de índices de enlaçamento assintótico lk(fi maiúsculo,xi maiúsculo) e de invariante de Hopf I(fi maiúsculo,xi maiúsculo), onde (fi maiúsculo) e (xi maiúsculo) são ações de Rk e de Rs, k mais s igual a n-1, respectivamente de difeomorfismos que preservam volume em (ômega maiúsculo n) a bola unitária fechada em Rn e mostraremos que lk (fi maiúsculo, xi maiúsculo) igual a I(fi maiúsculo,xi maiúsculo).
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT E SUMÁRIO PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
CAPÍTULO 6 PDF    
CAPÍTULO 7 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS PDF