Título: | EXTENSÕES DE LÓGICA PROPOSICIONAL DINÂMICA PARA REDES DE PETRI | |||||||
Autor: |
BRUNO LOPES VIEIRA |
|||||||
Colaborador(es): |
EDWARD HERMANN HAEUSLER - Orientador GILLES DOWEK - Coorientador |
|||||||
Catalogação: | 10/FEV/2015 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
|||||
Tipo: | TEXTO | Subtipo: | TESE | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=24052&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=24052&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.24052 | |||||||
Resumo: | ||||||||
Lógica Proposicional Dinâmica (PDL) é um sistema lógico multi-modal utilizada para especificar e verificar propriedades em programas sequenciais. Redes de Petri são um formalismo largamente utilizado na especificação de sistemas concorrentes e possuem uma interpretação gráfica bastante intuitiva. Neste trabalho apresentam-se extensões da Lógica Proposicional Dinâmica onde os programas são substituídos por Redes de Petri. Define-se uma codificação composicional para as Redes de Petri através de redes básicas, apresentando uma semântica composicional. Uma axiomatização é definida para a qual o sistema é provado ser correto, e completo em relação à semântica proposta. Três Lógicas Dinâmicas são apresentadas: uma para efetuar inferências sobre Redes de Petri Marcadas ordinárias e duas para inferências sobre Redes de Petri Estocásticas marcadas, possibilitando a modelagem de cenários mais complexos. Alguns sistemas dedutivos para essas lógicas são apresentados. A principal vantagem desta abordagem concerne em possibilitar efetuar inferências sobre Redes de Petri [Estocásticas] marcadas sem a necessidade de traduzí-las a outros formalismos.
|
||||||||