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Propositional Dynamic Logic for Petri Nets (Petri-PDL)

This chapter presents a Propositional Dynamic Logic that uses Petri

Nets terms as programs (Petri-PDL). We define an axiomatic system and

prove soundness, completeness, and the EXPTime-hardness of its satisfiability

problem.

As pointed out by the work of Mazurkiewicz (1987, 1989), logics that

deal with Petri Nets use to be incomplete due to the possibility of a place

always increase its token amount (up to countable infinity). To restrict a subset

of Petri Nets where we can achieve decidability and completeness, we call

normalised Petri Net any Petri Net composed as in Section 2.3.2 and do not

contains any place that can accumulate an infinity amount of tokens. From

now on, all the proofs deals only with normalised Petri Nets.

3.1
Language and semantics

The language of Petri-PDL consists of

Propositional symbols: p, q. . . , where � is the set of all propositional

symbols

Place names: e.g.: a, b, c, d . . .

Transition names: e.g.: t1, t2, t3 . . .

Petri Net Composition symbol: �

Sequence of names: S = {✏, s1, s2, . . .}, where ✏ is the empty sequence. We

use the notation s � s0 to denote that all names occurring in s also occur

in s0, regardless its order.

Definition 23 Petri-PDL program

We use ⇡ to denote a Petri Net program and s to denote a sequence of

names (the markup of ⇡). The transitions may be from three types, T1 : xt1y,

T2 : xyt2z and T3 : xt3yz, each transition has a unique type.

Basic programs: ⇡
b

::= at1b | at2bc | abt3c where t
i

is of type T
i

, i = 1, 2, 3
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Extending Propositional Dynamic Logic for Petri Nets 26

Petri Net Programs: ⇡ ::= s, ⇡
b

| ⇡ � ⇡

Definition 24 Petri-PDL formula

A formula is defined as

' ::= p | > | ¬' | ' ^ ' | h⇡i'.

We use the standard abbreviations ? ⌘ ¬>, ' _ � ⌘ ¬(¬' ^ ¬�),
'! � ⌘ ¬(' ^ ¬�) and [s, ⇡]' ⌘ ¬hs, ⇡i¬'.

Definition 25 Firing function

We define the firing function f : S ⇥ ⇡ ! S as follows

– f(s, at1b) =

(
s1bs2 if s = s1as2

✏ if a 6� s

– f(s, abt2c) =

(
s1cs2s3 if s = s1as2bs3

✏ if a 6� s or b 6� s

– f(s, at3bc) =

(
s1s2bc if s = s1as2

✏ if a 6� s

– f(✏, ⌘) = ✏, for all petri nets programs ⇡.

– f(s, ⇡) =

(
f(s, ⌘) if 9⌘ ⇢ ⇡ such that ⌘ is a basic transition and f(s, ⌘) 6= ✏

✏ otherwise

Definition 26 Petri-PDL frame

A frame for Petri-PDL is a 3-tuple F = hW,R
⇡

,Mi, where

– W is a non-empty set of states;

– M : W ! S;

– R
⇡

is a binary relation over W , for each basic program ⇡, satisfying the

following condition. Let s = M(w)

– if f(s, ⇡) 6= ✏, wR
⇡

v i↵ f(s, ⇡) � M(v)

– if f(s, ⇡) = ✏, wR
⇡

v i↵ w = v

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA
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Definition 27 Behaviour of R over composed Petri Net programs

We inductively define the behaviour of the relation R
⇡

, for each Petri Net

program

⇡ = ⇡1 � ⇡2 � · · ·� ⇡
n

, as

R
⇡

= {(w, v) | for some ⇡
i

, 9u such that s
i

� M(u) and wR
⇡iu and uR

⇡

v}

Where s
i

= f(s, ⇡
i

), for all 1  i  n and s = M(w).

Definition 28 Petri-PDL model

A model for Petri-PDL is a pair M = hF ,Vi, where F is a Petri-PDL

frame and V is a valuation function V : �! 2W .

The semantical notion of satisfaction for Petri-PDL is defined as follows.

Definition 29 Petri-PDL satisfaction notion

Let M = hF ,Vi be a model. The notion of satisfaction of a formula '

in a model M at a state w, notation M, w � ', can be inductively defined as

follows:

– M,w � p i↵ w 2 V(p);

– M,w � > always;

– M,w � ¬' i↵ M,w 6� ';

– M,w � '1 ^ '2 i↵ M,w � '1 and M,w � '2;

– M,w � hs, ⌘i' i↵ there exists v 2 W , wR
⌘

v, s � M(w) and M,v � '.

If M,v � A for every state v, we say that A is valid in the model M,

notation M � A. And if A is valid in all M we say that A is valid, notation

� A.
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Extending Propositional Dynamic Logic for Petri Nets 28

3.2
Axiomatic system

We consider the following set of axioms and rules, where p and q are

proposition symbols, ' and  are formulae, ⌘ = ⌘1 � ⌘2 � · · · � ⌘
n

is a Petri

Net program and ⇡ is a Petri Net program with a sequence of names.

(PL) All propositional logic tautologies

(K) [s, ⇡](p ! q) ! ([s, ⇡]p ! [s, ⇡]q)

(Du) [s, ⇡]p $ ¬hs, ⇡i¬p

(PC) hs, ⌘i'$ hs, ⌘1ihs1, ⌘i' _ hs, ⌘2ihs2, ⌘i' _ · · · _ hs, ⌘
n

ihs
n

, ⌘i',
where s

i

= f(s, ⌘
i

), for all 1  i  n and ⇡ is not a basic program

(R
✏

) hs, ⌘i'$ ', if f(s, ⌘) = ✏

(Sub) If � ', then � '�, where � uniformly substitutes proposition symbols

by arbitrary formulae

(MP) If � ' and � '!  , then �  

(Gen) If � ', then � [s, ⇡]'

Notice that the restriction over (PC) to not be applied over basic

programs avoids the needing of axioms for basic programs.

3.3
Soundness and completeness

The axioms (PL), (K) and (Du) and the rules (Sub), (MP) and (Gen)

are standard in the modal logic literature.

Lemma 30 Validity of Petri-PDL axioms

1. � PC

Proof: Suppose that there is a world w from a model M =

hW,R
⇡

,V,Mi where PC is false. For PC to be false in w, there are

two cases:

(a) Suppose M, w � hs, ⌘i' (1) and

M, w 6� hs, ⌘1ihs1, ⌘i' _ hs, ⌘2ihs2, ⌘i' _ · · · _ hs, ⌘
n

ihs
n

, ⌘i' (2);

From Definition 29, (1) i↵ there is a v such that wR
⌘

v, s � M(w)

and M, v � ' (3).
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By Definition 26 R
⌘

= {(w, v) | for some ⌘
i

, 9u such that s
i

�
M(u) and wR

⌘iu and uR
⌘

v},
from (3) M, u � hs

i

, ⌘i' and M, w � hs, ⌘
i

ihs
i

, ⌘i'. This implies

M, w � hs, ⌘1ihs1, ⌘i' _ hs, ⌘2ihs2, ⌘i' _ · · · _ hs, ⌘
n

ihs
n

, ⌘i', which
contradicts (2).

(b) Suppose

M, w � hs, ⌘1ihs1, ⌘i'_ hs, ⌘2ihs2, ⌘i'_ · · ·_ hs, ⌘
n

ihs
n

, ⌘i' (2), by

Definition 26, i↵ for some i (1  i  n), M,w � hs, ⌘
i

ihs
i

, ⌘i' i↵

there is a u such that wR
⌘iu, s � M(w) and M, u � hs

i

, ⌘i' (3),

by Definition 29,

i↵ there is a v such that uR
⌘

v, s
i

� M(u) and M, v � ' (4),

By Definition 26, (3) and (4) we have wR
⌘

v and s � M(w) and

M, v � '. Thus, M, w � hs, ⌘i', which contradicts the hypothesis.

So, PC is valid. ⌅

2. � R
✏

Proof: Suppose that there is a world w from a model M =

hW,R
⇡

,M,Vi where R
✏

is false. For R
✏

to be false in w, there are two

cases:

(a) Suppose M, w � h✏, ⌘i' (1) and

M, w 6� ' (2)

(1) i↵ there is a v such that wR
✏,⌘

v and M, v � '. As f(✏, ⌘) = ✏,

then w = v and wR
⌘

w and M, w � ', which contradicts (2).

(b) Suppose M, w 6� h✏, ⌘i' (1) and

M, w � ' (2).

(1) i↵ for all v such that, if wR
✏,⌘

v then M, v � ¬'. As f(✏, ⌘) = ✏,

then w = v and wR
⌘

w and M, w � ¬', which contradicts (2).

So, R
✏

is valid. ⌅

Then, Petri-PDL is sound.

The completeness proof goes as in the work of Blackburn et al. (2001);

Harel et al. (2000) and Goldblatt (1992b).

Definition 31 Filtration

Given a Petri-PDL formula ', a Petri-PDL model K = hW,R
⌘

,M,Vi,
we define a new model

K = hW', R'

⌘

,M',V'i,
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the filtration of K by FL('), as follows.

The relation ⌘ over the worlds of K is defined as

u ⌘ v $ 8� 2 FL('),K,u � � i↵ K,v � �

(the equivalence class of u) and the relation R'

⌘

is defined as

[u]R'

⌘

[v] $ (9u0 2 [u] ^ 9v0 2 [v] ^ u0R
⌘

v0).

(a) [u] = {v | v ⌘ u}, where [u] is the equivalence class of u

(b) W' = {[u] | u 2 W}

(c) [u] 2 V'(p) i↵ u 2 V (p)

(d) M'([u]) = hs1, s2, . . . i where for all j � 1, v
j

2 [u] i↵ M(v
j

) = s
j

All rules may be composed inductively to extend in order to compound all

programs and propositions due to compositions as in section 3.1.

Lemma 32 Filtration Lemma

8u, v 2 W, uR
⌘

v i↵ [u]R'

⌘

[v]

Proof: As in Definition 31 w 2 [w] i↵ 8w0 2 [w], w0 ⌘ w (1)

and [u]R'

⌘

[v] for some u 2 [u] and v 2 [v] we have that u0R'

⌘

v0 (2).

So if uR'

⌘

v and we do not have that [u]R'

⌘

[v] then it will contradicts (1). If

[u]R'

⌘

[v] but we do not have that uR'

⌘

v then it will contradicts (2). ⌅

Lemma 33 K' is a finite Petri-PDL model.

Proof:

– W' is finite a set of states by Definition 31 and lemma 43.

– M' : W' ! S by Definition 31.

– R'

⌘

= {([w], [v]) | for some ⌘
i

9[u] such that s
i

� M'([u]) and [w]R
⌘i [u] and [u]R

⌘

[v]}
for any program ⌘ = ⌘1 � · · ·� ⌘

n

, where s
i

= f(s, ⌘
i

) and 1  i  n.

– V' : �! 2W
'
by Definition 31.

Then K' is a finite Petri-PDL model. ⌅

Corollary 34 Decidability

Proof: As, by Lemma 33, the number of states is finite, there is an algorithm

to check whether a formula ' of Petri-PDL is satisfiable. ⌅
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Definition 35 Canonic Model

The canonic model for Petri-PDL with language ⇤ is a 4-tuple C⇤ =

hW⇤, R⇤,M⇤,V⇤i, where W⇤ is the set of all maximal consistent sets of

formulae; V⇤ is the valuation function where for all w 2 W⇤, w 2 V⇤(')

i↵ ' 2 w; M⇤ is the markup of the Petri Net programs, defined as

M⇤(w) = {s1, . . . , sn | hs
i

, ⇡i' 2 w, 1  i  n,w 2 W⇤};

and R⇤ is the binary relation between the elements of W⇤ defined for each

program ⇡ as

R⇤
⇡

= {(n,m) | n,m 2 W⇤, {'/[s, ⇡]' 2 n,s � M⇤(n)} ✓ m}.

Lemma 36 C⇤ is a model for Petri-PDL

Proof: By Definition 35:

– W⇤ is a set of states.

– M⇤ : W⇤ ! S.

– R⇤
⇡

= {(w, v) | for some ⇡
i

9u such that s
i

� M⇤(u) and wR
⇡iu and uR

⇡

v}
for any program ⇡ = ⇡1 � · · ·� ⇡

n

, where s
i

= f(s, ⇡
i

) and 1  i  n.

– V⇤ : �! 2W
⇤
.

So, C⇤ is a model for Petri-PDL. ⌅

Lemma 37 [s, ⇡]' 2 u i↵ in all v such that uR⇤
⇡

v, ' 2 v.

Proof:

Supose [s, ⇡]' 2 u and there is no v 2 W⇤ such that uR⇤
⇡

v and ' 2 v

(1).

As ⇡ = ⇡1 � · · · � ⇡
n

, by the definition of R⇤
⇡

we have that all

[s, ⇡
i

][s
i

, ⇡]', 1  i  n 2 v for all 1  i  n if uR⇤
⇡

v (2).

By (PC), all [s, ⇡
i

][s
i

, ⇡]', 1  i  n 2 u for all 1  i  n (3).

But if (3) then ' is in some v such that uR⇤
⇡

v by R⇤ definition, which

contradicts (1).

So, in all v such that uR⇤
⇡

v, ' 2 v.

Supose that exists some u 2 W⇤ where [s, ⇡]' 62 u and such that in all v

that uR⇤
⇡

v, ' 2 v (4).

By R⇤
⇡

definition, if in all v that uR⇤
⇡

v, ' 2 v, then [s, ⇡]' 2 u (5).

Then, there is a contradiction. ⌅
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Lemma 38 Let C⇤ = hW⇤, R⇤,M⇤,V⇤i a Canonic Model (as in Defini-

tion 35). Then, for any w 2 W⇤, w � ' i↵ ' 2 w.

Proof: We make an induction on �.

1. If ' is an atomic formula, it holds by the definition of V⇤.

2. If ' is ¬� then w � ' i↵ � 62 w by the definition of canonic model.

3. If ' is in the form �1 ^ �2 then, w � ' i↵ w � �1 and w � �2, and

�1 2 w and �2 2 w.

4. If ' is hs, ⇡i�, then, w � ' i↵:

(R
✏

): f(s, ⇡) = ✏, wR⇤
⇡

w, w � � and w 2 V⇤(�) by the inductive

hypothesis;

(PC): 9u9v, wR⇤
⇡i
u, uR⇤

⇡

v, 1  i  n, v � � and v 2 V⇤(�) by the

inductive hypothesis and by Lemma 37, where ⇡ = ⇡1 � · · ·� ⇡
n

.

So, this lemma holds. ⌅

Lemma 39 If ' 2 w for all w maximal consistent set of formulae, then � '.

Proof: Suppose 6� '; then, by Lemma 38, ¬' 2 w. But if ' 2 w and ¬' 2 w

then we have a contradiction. ⌅

Theorem 40 Completeness

If � ' then ` '.
Proof: If ' is valid then it is valid in all models, including the canonic. So,

it is valid in all worlds of C⇤ (all maximal consistent sets). So by Lemma 39,

' is derivable. Therefore if � ', then ` '. ⌅

Definition 41 The Fischer-Ladner closure

It is inductively defined as follows, where FL(') denotes the smallest set

containing ' which is closed under sub formulae.

FL : ⌥! 2⌥, where ⌥ is the set of all formulae

1. FL(') is closed under subformulae;

2. if hs, ⌘i 2 FL('), then hs, ⌘
i

ihs
i

, ⌘i 2 FL('),

where ⌘ = ⌘1 � ⌘2 � · · ·� ⌘
n

and s
i

= f(s, ⌘
i

), for all 1  i  n.
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Lemma 42 Let ⌘ = ⌘1� ⌘2� · · ·� ⌘
n

be a composed Petri Net program where

each ⌘
i

, 1  i  n, is a basic Petri Net program and s is a sequence of names.

For every sequence (s0, ⌘) ! (s1, ⌘) ! · · · ! (s
k

, ⌘), where s0 = s, k � 0 and

s
j

= f(s, ⌘
i

) for some 1  i  n, then either s
k

= ✏ or one of s
j

= s
`

for

0 < j  k, 0 < `  k and j 6= `.

Proof: As ⌘ has no places that accumulates tokens infinitely, after firing all

the basic Petri Net programs of ⌘ on and on there are two possibilities for the

markup of ⌘:

1. there is no transition able to fire, so s
k

= ✏;

2. some markup m of ⌘ activated a loop in the Petri Net (e.g. ⌘ as a graph

is cyclic), so after a non empty serie of fires the markup m of ⌘ will

appear again, so s
j

= s
`

for some 0 < j  k and some 0 < `  k such

that j 6= `.

⌅

Lemma 43 FL(') is finite.

Proof: The only possibility of construct ' � � (i.e. � is derived from the

formula ') is i↵ ' is in the form hs, ⇡i and � is in the form hs, ⇡
i

ihs
i

, ⇡i for

some 1  i  n where n is the size of the Petri Net program ⇡ (i.e. the number

of atomic programs of ⇡) and ⇡
i

is an atomic program. Then the smallest closed

set � containing a formula ⇢ is obtained by closing FL(⇢) under �; hence

� 2 � i↵ there is a finite sequence of the form ' = '1 � · · · � '
j

= �, where

8
m 6=n

'
m

6= '
n

and ' 2 FL(⇢). So, if hs,i � hp, ⌧i� for  a normalised

Petri Net program, then ⌧ is an atomic Petri Net program or is equal to .

Therefore there can be no infinitely-long �-sequences.

So, FL(') is finite. ⌅

Lemma 44

(i) If � 2 FL('), then FL(�) ✓ FL(')

(ii) If � 2 FL(hs, ⇡i'), then FL(�) ✓ FL(hs, ⇡i') [ FL(')

Proof: We make an induction on FL(�).

(i) If � 2 FL('), then as by 1. in Definition 41 FL(') is closed under

subformulae. There are three cases depending on the form of '.

(a) If ' is an atomic proposition p then according to Definition 41 � = p

and FL(�) = FL(').
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(b) If ' is in the form ¬� then according to Definition 41 � = ¬� and

by induction and (i) FL(�) ✓ FL(').

(c) If ' is in the form � ^  then according to Definition 41 either

� = � ^  , or � 2 FL(�) or � 2 FL( ). In the first case FL(�) =

FL('); in the second and third cases we have FL(�) ✓ FL(�) and

FL(�) ✓ FL( ), respectively, by induction and (i). By Definition 41

in either case FL(�) ✓ FL(').

Then FL(�) ✓ FL(')

(ii) If � 2 FL(hs, ⇡i'), then by 2. in Definition 41 � 2 FL(hs, ⇡i') or

� 2 FL('). In the former case, FL(�) ✓ FL(hs, ⇡i') [ FL('), by

induction and (ii). In the latter case, FL(�) ✓ FL(') by induction and

(i). Thus in either case, FL(�) ✓ FL(hs, ⇡i') by 2. in Definition 41.

Assuming that (i) and (ii) hold for subexpressions, we have three cases

(let ⇡ = ⇡1 � ⇡2 � · · ·� ⇡
n

).

(a) If � = hs, ⇡i' then FL(�) = FL(hs, ⇡i') [ FL(') by 2. in Defini-

tion 41.

(b) If � 2 FL(hs, ⇡
i

ihf(s, ⇡
i

), ⇡i') then FL(�) ✓ FL(hs, ⇡
i

ihf(s, ⇡
i

), ⇡i')[
FL(hf(s, ⇡

i

), ⇡i') by induction and (ii) and FL(�) ✓
FL(hs, ⇡

i

ihf(s, ⇡
i

), ⇡i') [ FL(hf(s, ⇡
i

), ⇡i') [ FL(') by 2. in

Definition 41. Hence FL(�) ✓ FL(hs, ⇡i')[ FL(') by 2. in Defini-

tion 41.

So FL(�) ✓ FL(hs, ⇡i') [ FL(').

⌅

3.4
Computational complexity

In this section we present a polynomial reduction of a well-know

EXPTime-hard problem to Petri-PDL SAT: the two person corridor tiling

game. This proof is base on another proof presented in the work of Blackburn

et al. (2001).

In the two person corridor tiling game, two players (Eloise and Abelard)

must place square tiles in a finite grid, where each tile side may have a di↵erent

color in each side, so that the colours of each side of the tiles match. Each player

begins with a finite amount of tiles (with colours randomly defined) and the

begin of the grid has a special colour (says white) and there is a special tile for

Eloise where, if it is put on column 1 then Eloise wins. When the game begins
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Eloise should put a tile in the column 0; in his turn, Abelard must place a tile

in the following position on the grid. After the end of the row (for an instance

n of the game, the game has n columns), the player must place a tile in the

next row, column 0. If no player is able to make a valid move or there are

no tiles then Abelard wins. The objective of this game is determine whether

Eloise has a winning strategy.

Lemma 45 The satisfiability of Petri-PDL is EXPTime-hard.

Proof: The proof goes by reducing the two person corridor tiling problem to

the Petri-PDL satisfiability problem, following the methodology of Blackburn

et al. (2001).

Given an instance T = (n, {T0, . . . , Ts+1}) of the two person corridor

tiling game where n is the width of the corridor and T
i

are the tiling types, we

will construct a formula '⌧ such that

(i) If Eloise has a winning strategy, '⌧ is satisfiable at the root of some game

tree for T (viewed as a regular Petri-PDL model).

(ii) If '⌧ is satisfiable, then Eloise has a winning strategy in the game T .

(iii) The formula '⌧ can be generated polynomially sized regarding n and s.

The formula '⌧ describes the game tree and states necessary and su�-

cient conditions for Eloise to win. To construct '⌧ , we will use the following

proposition letters:

t0, . . . , ts+1 to represent the tiles, where t0 is white;

p1, . . . ,pn to indicate where the tile must be placed in the current round;

ci(t),0  i  n+ 1, 8t 2 {t0, . . . , ts+1} to indicate the type t of previously

placed tile in column i;

w to indicate that the current position is a winning position for Eloise.

The general schema of a Petri Net (mapped in a Petri Net program ⌘)

which models this game is in Figure 3.1, where there is one transition similar

to R? for each row r such that 1 < r < n to denotes that a new row has begun.

This Petri Net is constructed as an induction into the definition of the problem.

The places denote the states of the game (i.e. after each move the other player

may make a move) and each transition is controlling the flow from states.

The sequence s denotes the initial markup of the Petri Net, that is, one

token in Row1 and the tokens needed to denote the initial set of pieces of Eloise

and Abelard, according to the legend below. Each place is described bellow.
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EC Eloise can play

EH Eloise has piece

EP Eloise plays

AC Abelard can play

AH Abelard has piece

AP Abelard plays

Col1,. . . ,Col
n

Each column of the game

Row1,. . . ,Row
n

Each row of the game

EC

EH EP

Col1

Col2

. . .

Col
n

Row1

Row2

. . .

Row
n

AC

AH AP

R?

Figure 3.1: Schema of a Petri Net for tiling game

Then, the beginning of the game is described as [s, ⌘]e ^ p1 ^ c0(white) ^
c1(tI1)^ · · ·^ c

n

(t
In)^ c

n+1(white), where I
i

, 1  i  n denotes the initial tiles

and e denotes that it is Eloise’s turn and f(s, ⌘) 6= ✏.

The set of formulae that rules the game is below.

(i) If Eloise does not have a piece to play at that moment, it is the turn

of Abelard: (([s, ⌘]� $ �) ^ ¬([s0, ⌘]� $ �)) ! [s0, ⌘]�, where s0 is a

sequence which di↵ers from s only by replacing the tokens EC and AC,

and EH and AH;

(ii) If Abelard does not have a piece to play at that moment, it is the turn

of Eloise: (([s0, ⌘]� $ �) ^ ¬([s, ⌘]� $ �)) ! [s, ⌘]� (from now on

all formulae have omitted a disjunction with a formula ⇢ such that ⇢

di↵ers from the corresponding formula only for changing s to s0 in this

enumeration of rules);
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(iii) The referee has already placed white tiles in the columns 0 and n + 1:

[s, ⌘]col0(white) ^ col
n+1(white);

(iv) The players must respect tiles colors: C(t0, t, t00) $ right(t0) = left(t) and

down(t0) = up(t00) (e.g. C holds if the tile t can be placed on the right of

t0 and above t00, where t, t0 and t00 are the positions correspondents to T ,

T 0 and T 00);

(v) Ensures tile matching left and downwards: [s, ⌘]((p
i

^ c
i�1(t0) ^ c(t00)) !

[s0, ⌘]
W
{c

i

(t) | C(t0, t, t00)}), where
W
{c

i

(t) | C(t0, t, t00)} is the disjunction

of all C(t0, t, t00), 0  i  n and, by convention,
W

; = ?

(vi) Ensures matching of tiles placed on column n with white corridor:

[s, ⌘](p
n

! [s0, ⌘]
W
{c

n

(t) | right(t) = white})

(vii) The first position is a winning position for Eloise: w.

As Eloise has a winning strategy, then: [s, ⌘](w ! (c1(ts+1)_([s0, ⌘]¬w)_
([s0, ⌘]w))).

To ensure that the game is finite (e.g. if the game has no end, Abelard

wins), the game is limited to N = ns+2 steps with no repetition, so:

[s, ⌘](counter = N) ! [s0, ⌘]¬w.
We define '⌧ as the conjunction of all these formulae.

If Eloise has a winning strategy, then there is a game tree such that '⌧

is satisfiable at the root of the game tree viewed as a Petri-PDL model. So, if

Eloise has a winning strategy, she can win in at most N steps. For a Petri-PDL

model M that corresponds to this at-most-N steps strategy it is straightforward

to check '⌧ satisfiability at the root of M.

If M, v � '⌧ , then Eloise has a winning strategy, encoded in M, in

the game T . As w is satisfied in v, Eloise can keep moving through winning

positions that she is always able to choose. Hence if counter = N (e.g.

the counter has reached), [s, ⌘]¬w is satisfied, so there are no more winning

positions, but as c1(ts+1) is satisfied, so the winning tile was placed in the first

step and Eloise has already won.

So, in a model M = hW,R
⌘

,M,Vi expressing an instance of the two-

person corridor tiling game we have two possibilities in a world u.

1. If Eloise wins the game then '⌧ is true in u. As '⌧ is true it is necessary

that all of the following formulae are valid in u.

(a) [s, ⌘]e ^ p1 ^ c0(white) ^ c1(tI1) ^ · · · ^ c
n

(t
In) ^ c

n+1(white), where

I
i

, 1  i  n

According to the firing function [s, ⌘]e must be true in u, as f(s, ⌘) 6=
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✏. (1)

c0(white)^ c1(tI1)^ · · ·^ c
n

(t
In)^ c

n+1(white) denotes that the limit

tiles are white, as defined in the game where the length of the corridor

is n (a generic instance), so it is true in u (2)

As (1) and (2) are true, then the formula is true.

(b) (([s, ⌘]�$ �) ^ ¬([s0, ⌘]�$ �)) ! [s0, ⌘]�

For this formula there are two cases.

(i) if f(s, ⌘) = ✏ then f(s0, ⌘) 6= ✏ according to ⌘ definition and the

firing function definition (1)

So [s0, ⌘]� is true in u (2)

Then, by (2), (([s, ⌘]�$ �)^¬([s0, ⌘]�$ �)) ! [s0, ⌘]� is true

in u.

(ii) if f(s, ⌘) 6= ✏ then f(s0, ⌘) = ✏ according to ⌘ definition and the

firing function definition (1)

Then [s0, ⌘]� is true in u. (2)

As [s0, ⌘]� is true in u by (2), then � is true in all v such that

uR
⌘

v. (3)

According to (1) [s, ⌘]� is not true, so there is some world v

such that uR
⌘

v where � is false in u. (4)

By (3) and (4) ([s, ⌘]�$ �)^¬([s0, ⌘]�$ �) is not true in u.

(5)

So, (([s, ⌘]�$ �) ^ ¬([s0, ⌘]�$ �)) ! [s0, ⌘]� is true in u.

So, (([s, ⌘]�$ �) ^ ¬([s0, ⌘]�$ �)) ! [s0, ⌘]� is true in u.

(c) (([s0, ⌘]�$ �) ^ ¬([s, ⌘]�$ �)) ! [s, ⌘]�

For this formula there are two cases.

(i) if f(s0, ⌘) = ✏ then f(s, ⌘) 6= ✏ according to ⌘ definition and the

firing function definition (1)

So [s, ⌘]� is true in u (2)

Then, by (2), (([s0, ⌘]�$ �)^¬([s, ⌘]�$ �)) ! [s, ⌘]� is true

in u.

(ii) if f(s0, ⌘) 6= ✏ then f(s, ⌘) = ✏ according to ⌘ definition and the

firing function definition (1)

Then [s, ⌘]� is true in u. (2)

As [s, ⌘]� is true in u by (2), then � is true in all v such that

uR
⌘

v. (3)

According to (1) [s0, ⌘]� is not true, so there is some world v

such that uR
⌘

v where � is false in u. (4)

By (3) and (4) ([s0, ⌘]�$ �)^¬([s, ⌘]�$ �) is not true in u.
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(5)

So, (([s0, ⌘]�$ �) ^ ¬([s, ⌘]�$ �)) ! [s, ⌘]� is true in u.

(d) [s, ⌘]col0(white) ^ col
n+1(white)

In order to begin the game the referee must place the white tites in

the first and last column, so [s, ⌘]col0(white), which describes the first

column white tiles, is true in u. (1)

In the same way col
n+1(white) which describes the last column white

tiles, is true in u. (2). By (1) and (2) we have that [s, ⌘]col0(white)^
col

n+1(white) is true in u.

(e) C(t0, t, t00) $ (right(t0) = left(T ) ^ (down(T 0) = up(T 00))) (this

sentence and w are true i↵ the tiles are well placed)

For this formula we have two cases.

(i) C(t0, t, t00) is true in u and right(t0) = left(T ) ^ (down(T 0) =

up(T 00)) is false in u If right(t0) = left(T ) ^ (down(T 0) =

up(T 00)) is false then we have two possibilities.

– If right(t0) = left(T ) is false then the side tile do not match

and the new tile cannot be placed, so C(t0, t, t00) is false,

then there is a contradiction. (1)

– If (down(T 0) = up(T 00)) is false then the bottom tile do not

match and the new tile cannot be placed, so C(t0, t, t00) is

false, then there is a contradiction. (2)

(ii) C(t0, t, t00) is false in u and right(t0) = left(T ) ^ (down(T 0) =

up(T 00)) is true in u

If right(t0) = left(T ) ^ (down(T 0) = up(T 00)) is true in u then

C(t0, t, t00) is true in u, so there is a contradiction. (3)

So, by (1), (2) and (3), C(t0, t, t00) $ (right(t0) = left(T ) ^
(down(T 0) = up(T 00))) is true in u.

(f) [s, ⌘]((p
i

^ c
i�1(t0) ^ c(t00)) ! [s0, ⌘]

W
{c

i

(t) | C(t0, t, t00)}), where

0  i  n and, by convention,
W
; = ? Suppose this formula is

false in u.

So, [s, ⌘]((p
i

^ c
i�1(t0) ^ c(t00)) is true in u (1)

and [s0, ⌘]
W
{c

i

(t) | C(t0, t, t00)}) is false in u. (2)

By (2) there is some v such that uR
⌘

v where no c
i

(t) is true. (3)

So by (3) in v we have that c
i�1(t0) ^ c(t00) is false. (4)

By (4) [s, ⌘]((p
i

^ c
i�1(t0) ^ c(t00)) cannot be true in u, so there is a

contradiction. Then, this formula is true.
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(g) [s, ⌘](counter = N) ! [s0, ⌘]¬w Suppose this formula is false in the

world u.

So [s, ⌘](counter = N) is true in the world u (1), when there are

moves available (e.g. some proposition denoting an specific move is

true)

and [s0, ⌘]¬w is false in the world u. (2)

By (2) there is some world v such that uR
⌘

v where the formula w is

false. (3)

So by (3) in v counter = N is false (e.g. the game step counter has

not reached its maximum value as long as it is still possible to place

tiles). (4)

By (4) [s, ⌘](counter = N) is false in the world u so there is a

contradiction. Then, this formula is true.

2. If Eloise loses the game then '⌧ is false. if '⌧ is false then some '⌧

subformulae is false.

(a) [s, ⌘]e ^ p1 ^ c0(white) ^ c1(tI1) ^ · · · ^ c
n

(t
In) ^ c

n+1(white), where

I
i

, 1  i  n

To this formula be false in u we have that

Eloise has no tile to place [s, ⌘]e is false in u, according to the firing

function f(s, ⌘) = ✏, (1)

or there are no limitant white tiles, so c0(white) ^ c1(tI1) ^ · · · ^
c
n

(t
In) ^ c

n+1(white) is false in u (2)

By (1) or (2) '⌧ is false.

(b) (([s, ⌘]�$ �) ^ ¬([s0, ⌘]�$ �)) ! [s0, ⌘]�

If there are no valid tiles to place, then f(s, ⌘) = ✏ and f(s0, ⌘) = ✏,

according to the firing function. (1)

By (1) and axiom R
✏

, � is true in u. (2) If � is true in u then some

tile must be placed, so '⌧ is false.

(c) (([s0, ⌘]�$ �) ^ ¬([s, ⌘]�$ �)) ! [s, ⌘]�

If there are no valid tiles to place, then f(s0, ⌘) = ✏ and f(s, ⌘) = ✏,

according to the firing function. (1)

By (1) and axiom R
✏

, � is true in u. (2) If � is true in u then some

tile must be placed, so '⌧ is false.

(d) C(t0, t, t00) $ (right(t0) = left(T ) ^ (down(T 0) = up(T 00)))

For this formula be false we have that an invalid tile was placed.

So C(t0, t, t00) is true in u (e.g. the tile was placed) (2) and right(t0) =

left(T ) ^ (down(T 0) = up(T 00)) is false in u (e.g. the placed tile does

not match). So, '⌧ will be false.
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(e) [s, ⌘]((p
i

^ c
i�1(t0) ^ c(t00)) ! [s0, ⌘]

W
{c

i

(t) | C(t0, t, t00)}), where

0  i  n and, by convention,
W

; = ? For this formula be false we

have that an invalid tile was placed.

So, [s, ⌘]((p
i

^ c
i�1(t0) ^ c(t00)) is true in u (1)

and [s0, ⌘]
W
{c

i

(t) | C(t0, t, t00)}) is false in u. (2)

As there is an invalid tile then using (2) we have that there is some

v such that uR
⌘

v where no c
i

(t) is true. (3)

So by (3) in v we have that c
i�1(t0) ^ c(t00) is false. (4)

By (4) [s, ⌘]((p
i

^ c
i�1(t0) ^ c(t00)) is not true in u, so this formula

will be false.

(f) [s, ⌘](counter = N) ! [s0, ⌘]¬w Suppose this formula is false in the

world u.

So [s, ⌘](counter = N) is true in the world u (e.g. the counter has

reached the maximum value) (1)

and [s0, ⌘]¬w is false in the world u (e.g. Eloise is not in a winning

position). (2)

By (2) there is there is some world v such that uR
⌘

v where the

formula w is false. (3)

As by (1) [s, ⌘](counter = N) is true in the world u and by (2)

[s0, ⌘]¬w then this formula will be false in the world u.

As it is possible to encode any m � 2 in O(logm+1) binary digits, N can

be encoded in O(log ns+2), which corresponds to (s+2) log n  (s+2)n. Then,

the formula that models the game is polynomial in s and n. So, the two person

corridor tiling problem is polynomially reducible to the Petri-PDL satisfiability

problem. Hence, Petri-PDL satisfiability is EXPTime-hard. ⌅

3.5
A Natural Deduction system for Petri-PDL

Based on other Natural Deduction systems for Modal Logics (Alechina

et al., 2001; Medeiros, 2006; Prawitz, 2006; Simpson, 1994) we define a Natural

Deduction system for Petri-PDL.

In all the rules a formula is preceded by a world where it is being

considered true (e.g. w : ', where w is a world of some model and ' is a

well formed formula).

w : ' w :  
^�i

w : ' ^  
w : ' ^  

^�e1w : '
w : ' ^  

^�e2
w :  

(3-1)
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{w : ¬'}j
...

w : ? ?j
cw : '

w : ? ?iw : ' (3-2)

{w : '}j
...

w :  
!�i

j

w : '!  

w : '!  w : '
!�e

w :  
(3-3)

w : '
_�i1

w : ' _  
w :  

_�i2
w : ' _  

(3-4)

w : ' _  

{w : '}j
...

u : �

{w :  }`
...

u : �
_�e

j,`
u : �

(3-5)

Note that the “!” (3-3) introduction and “?” (3-2) and “_” (3-5)

elimination rules may discharge hypothesis (discharges are always identified

by “{·}” and the indexes identify the inference responsible for the discharge).

The inference rules to deal with programs (program rules) have restric-

tions according to the firing function, where ⇡ is any Petri Net program, R
⇡

is

the relation indexed to the program ⇡. The discharge of hypothesis is always

identified by curly braces (i.e. “{·}00) indexed by the rule used in it.

w : hs, ⇡i'
f1

w : hs, ⇡1ihf(s, ⇡1), ⇡i' _ · · · _ hs, ⇡
n

ihf(s, ⇡
n

), ⇡i'
(3-6)

w : [s, ⇡]' wR
⇡

u
f2

u : [f(s, ⇡
i

), ⇡]'
(3-7)

w : hs, ⇡i'
✏1w : '

w : hs, ⇡i'
✏2

wR
⇡

w
(3-8)

u : ' wR
⇡

u
⇡⇧�i

w : hs, ⇡i'
(3-9)

w : hs, ⇡i'

{u : '}j {wR
⇡

u}`
...

v :  
⇡⇧�e

j,`

v :  

(3-10)

w : '1, . . . , w : '
n

{w : '1}j1 , . . . , {w : '
n

}jn{wR
⇡

u}`
...

u :  
⇡⇤�i

j1,...,jn,`

w : [s, ⇡] 

(3-11)
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w : [s, ⇡]' wR
⇡

u
⇡⇤�eu : '

(3-12)

The program rules “f1” (3-6) and “f2” (3-7), that may already denote

formulae with composed Petri Net programs using the definition where ⇡ =

⇡1�⇡2� · · ·�⇡
n

with the restriction that in these rules f(s, ⇡) 6= ✏. Although

the “✏” (3-8) can be applied only if f(s, ⇡) = ✏.

In the firing (3-6), “⇡⇧” (3-9) (3-10) and in the the “⇡⇤” (3-11) (3-12)

rules it it is important to notice that the sequence s in the program modality

introduced must ensure that f(s, ⇡) 6= ✏ unless the world be reflexive and that

the world u must be the point where the program stops.

3.5.1
Soundness of the Natural Deduction system for Petri-PDL

We prove the soundness of the Natural Deduction system in the same

way of van Dalen (2008). A formula ' can be derived from � is true i↵ it may

be achieved by a sequence of inference rules D of ' with all hypotheses on �.

So, it su�ces to show that the semantical notion of satisfiablity is preserved

(i.e. if � ` ' then � � ' in the sense that � is a set of assumptions used for

the derivation of '). Let � �
w

' “' is true with the hypotheses � in a world

w.”

Lemma 46 If � ` ' then � � ': the Natural Deduction system for Petri-PDL

is sound.

Proof: The propositional operators are standard into the modal logic literat-

ure. We use induction on D.

(base) If the derivation has only one element, then obviously w : ' 2 �, so it is

straightforward that � �
w

'.

(f) 1. Induction hypothesis: for any � containing all hypotheses

of D
w : hs,'i' , we have that � �

w

hs, ⇡i' and

f(s, ⇡) 6= ✏. Consider a � containing all hypotheses of a
D

w : hs, ⇡i'
w : hs, ⇡1ihf(s, ⇡1), ⇡i' _ · · · _ hs, ⇡

n

ihf(s, ⇡
n

), ⇡i'
. Let all � 2 �

be valid, then hs, ⇡i' is valid in w; so hs, ⇡1ihf(s, ⇡1), ⇡i' _
· · · _ hs, ⇡

n

ihf(s, ⇡
n

), ⇡i' is also valid in w, then � �
w

hs, ⇡1ihf(s, ⇡1), ⇡i' _ · · · _ hs, ⇡
n

ihf(s, ⇡
n

), ⇡i'.

2. Induction hypothesis: D
w : [s, ⇡]'

and D0

wR
⇡

u
are derivations and

for each �,�0 containing the hypotheses of D,D0, � �
w

[s, ⇡]' and
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{wR
⇡

u} ✓ �0 and f(s, ⇡
i

) 6= ✏. Now let �00 contain the hypotheses

of
D

w : [s, ⇡]'
D0

wR
⇡

u

w : [f(s, ⇡
i

), ⇡]'

. Choosing �00 to be the set of hypotheses

of D and D0 then �00 ◆ � [ �0. So �00 �
w

[s, ⇡]' and {wR
⇡

u} ✓ �00.

Let all � 2 �00 be valid, then [s, ⇡]' is true in w and wR
⇡

u; hence

[f(s, ⇡
i

), ⇡]' is true in w, which shows that �00 �
w

[f(s, ⇡
i

), ⇡]'.

(✏) Induction hypothesis: for any � containing the hypotheses of D
w : hs, ⇡i'

we have that � �
w

hs, ⇡i' and f(s, ⇡) = ✏. Consider a � containing all

hypotheses of
D

w : hs, ⇡i'
w : '

and
D

w : hs, ⇡i'
wR

⇡

u
. Let all � 2 � be valid,

then hs, ⇡i' is true in w; so ' is true in w and wR
⇡

u, then � �
w

' and

wR
⇡

u.

(⇡⇧ � i) Induction hypothesis: D
u : ' and D0

wR
⇡

u
are derivations and for each

�,�0 containing the hypotheses of D,D0, � �
u

' and {wR
⇡

u} ✓ �0 and

f(s, ⇡) 6= ✏. Now let �00 contain the hypotheses of
D

u : '
D0

wR
⇡

u
w : hs, ⇡i'

.

Choosing �00 to be the set of hypotheses of D and D0 then �00 ◆ �[�0. So

�00 �
u

' and {wR
⇡

u} ✓ �00. Let all � 2 �00 be valid, then ' is true in u

and wR
⇡

u; hence hs, ⇡i' is true in w, which shows that �00 �
w

hs, ⇡i'.

(⇡⇧ � e) Induction hypothesis: for any � containing all hypotheses of D
w : hs, ⇡i'

and
u : ' wR

⇡

u

D0

v :  
and f(s, ⇡) 6= ✏, then � �

v

 . Let �0 contain all

hypotheses of D
w : hs, ⇡i'

{w : '}j {wR
⇡

u}`

D0

v :  
j,`

v :  

. �0 [ {u : '} [

{wR
⇡

u} contains all the hypotheses of D
w : hs, ⇡i'

u : ' wR
⇡

u

D0

v :  
v :  

so hs, ⇡i' is true in w, ' is true in u and wR
⇡

u as also all � 2 �0 are

valid, then  is valid in v; hence �0 �
v

 .

(⇡⇤ � i) Induction hypothesis: for any � containing all hypotheses of
D

w : '1, . . . , w : '
n

and D0 w : '1, . . . , w : '
n

, wR
⇡

u
u :  

and u is the final

state of a program ⇡ (i.e. ⇡ stops in u), then � �
u

 . Let �0 contain all

hypotheses of D
w : '1, . . . , w : '

n

{w : '1}j1 , . . . , {'n

}jn , {wR
⇡

u}`

D0

u :  
j1,...,jn,`

w : [s, ⇡] 
. �0 [ {u : '1} [ · · · [ {'

n

} [ {wR
⇡

u} contains all the hypotheses of
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D
w : '1, . . . , w : '

n

w : '1, . . . , w : '
n

, wR
⇡

u

D0

u :  
w : [s, ⇡] 

, so '1, . . . ,'n

are valid

in w,  is valid in u and wR
⇡

u as also all � 2 �0 are valid, then [s, ⇡] 

is true in w; hence �0 �
w

[s, ⇡] .

(⇡⇤ � e) Induction hypothesis: D
w : [s, ⇡]'

and D0

wR
⇡

u
are derivations and

for each �,�0 containing the hypotheses of D,D0, � �
w

[s, ⇡]' and

{wR
⇡

u} ✓ �0 and u is the final state of the program ⇡ (i.e. ⇡ stops

in u). Now let �00 contain the hypotheses of
D

w : [s, ⇡]'
D0

wR
⇡

u
u : '

.

Choosing �00 to be the set of hypotheses of D and D0 then �00 ◆ � [ �0.

So �00 �
w

[s, ⇡]' and {wR
⇡

u} ✓ �00. Let all � 2 �00 be valid, then [s, ⇡]'

is true in w and wR
⇡

u; hence ' is true in u, which shows that �00 �
u

'.

As all rules preserve the truth, the system is sound. ⌅

3.5.2
Completeness of the Natural Deduction system for Petri-PDL

To prove the completeness of the system we derive the axioms and show

the representation of the operators.

Lemma 47 The axioms of Petri-PDL are derivable by its Natural Deduction

system.

Proof:

(PL) The non-modal propositional part is complete regarding derivations of

w : ↵ from w : �. Thus, all (PL) labeled axioms are provable in Petri-

PDL Natural Deduction system.

(K) [s, ⇡](p ! q) ! ([s, ⇡]p ! [s, ⇡]q)
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{w
:
[s
,⇡

](
p
!

q)
}3
,{
w

:
[s
,⇡

]p
}2

{w
:
[s
,⇡

](
p
!

q)
}1

{w
R

⇡

u
}1

⇡
⇤
�
e

u
:
p
!

q
{w

:
[s
,⇡

]p
}1

{w
R

⇡

u
}1

⇡
⇤
�
e

u
:
p

!
�
e

u
:
q
⇡
1 ⇤
�
i

w
:
[s
,⇡

]q
!

�
i2

w
:
[s
,⇡

]p
!

[s
,⇡

]q
!

�
i3

w
:
[s
,⇡

](
p
!

q)
!

([
s,
⇡
]p

!
[s
,⇡

]q
)
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(Du) [s, ⇡]'$ ¬hs, ⇡i¬'
For this formula we have two derivations.

(a) [s, ⇡]'! ¬hs, ⇡i¬'

{w : [s, ⇡]'}3 {wR
⇡

u}3
⇡⇤�e u : '

{w : hs, ⇡i¬'}2 {u : ¬'}1{wR
⇡

u}1
⇡1
⇧�eu : ¬'

?u : ? ?2
cw : ¬hs, ⇡i¬'

! �i3
w : [s, ⇡]'! hs, ⇡i¬'

(b) ¬hs, ⇡i¬'! [s, ⇡]'

{w : ¬hs, ⇡i¬'}3

{u : ¬'}1 {wR
⇡

u}2
⇡⇧�e

w : hs, ⇡i¬' {w : ¬hs, ⇡i¬'}2
? w : ? ?1

cu : '
⇡2
⇤�iw : [s, ⇡]'

! �i
w : ¬hs, ⇡i¬'! [s, ⇡]'

(PC) hs, ⌘i'$ hs, ⌘1ihs1, ⌘i' _ hs, ⌘2ihs2, ⌘i' _ · · · _ hs, ⌘
n

ihs
n

, ⌘i',
where s

i

= f(s, ⌘
i

), for all 1  i  n

For this formula we have two derivations.

(a) hs, ⌘i'! hs, ⌘1ihs1, ⌘i' _ hs, ⌘2ihs2, ⌘i' _ · · · _ hs, ⌘
n

ihs
n

, ⌘i'
This case is straightforward from the definition of the firing

rule (3-6).

(b) hs, ⌘1ihs1, ⌘i' _ hs, ⌘2ihs2, ⌘i' _ · · · _ hs, ⌘
n

ihs
n

, ⌘i'! hs, ⌘i'
Due to the lack of space we abbreviate “hs, ⌘1ihs1, ⌘i' _
hs, ⌘2ihs2, ⌘i' _ · · · _ hs, ⌘

n

ihs
n

, ⌘i'” to  , hs, ⌘
j

ihs
j

, ⌘i' _
hs, ⌘

j+1ihsj+1, ⌘i'_ · · ·_hs, ⌘
n

ihs
n

, ⌘i' to  
j�1 and “hs, ⌘

i

ihs
i

, ⌘i'”
to  0

i

.
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{w
:
 
}j

{w
:
 

0 1
}2

{u
:
'
}1

{w
R

⇡

u
}1

⇡
⇧�

i

w
:
hs
,⌘
i'

⇡
1 ⇧�

e

w
:
hs
,⌘
i'

{w
:
 

1
}2

{w
:
 

0 2
}3

{u
:
'
}4

{w
R

⇡

u
}4

⇡
⇧�

i

w
:
hs
,⌘
i'

⇡
4 ⇧�

e

w
:
hs
,⌘
i'

{w
:
 

2
}2

. . .
w

:
hs
,⌘
i'

_
�

e3
w

:
hs
,⌘
i'

_
�

e2
w

:
hs
,⌘
i'

!
�
ij

w
:
 

!
hs
,⌘
i'
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(R
✏

) hs, ⌘i'$ ', if f(s, ⌘) = ✏

For this formula we have two derivations.

(a) hs, ⌘i'! '

This case is straightforward from the definition of the ✏1 (3-8) rule.

(b) '! 'hs, ⌘i

w : '
{w : hs, ⌘i'}1

f
✏2wR

⇡

w ⇡⇧�i

w : hs, ⌘i'
! �i1

w : hs, ⌘i'! hs, ⌘i' ! �e
w : hs, ⌘i'

(Sub) It is straightforward from the rules definition.

(MP) It is straightforward from the rules (3-3).

(Gen) It is straightforward from the rules (3-11).

So, the Natural Deduction system for Petri-PDL can derive its axioms. ⌅

Theorem 48 The Natural Deduction system for Petri-PDL is complete.

Proof: By Lemma 47 the Natural Deduction system can simulate Petri-PDL

axiomatic system and the operators behaviour derivation are straightforward

from the rules definition, so the system is complete. ⌅

3.6
A Resolution system for Petri-PDL

In this section we present a clausal Resolution based calculus for Petri-

PDL proposed by Nalon et al. (2014). In order to prove that a formula '

is valid, we apply the inference rules to the clausal form of the negated

formula, ¬'. The transformation into the normal form follows the works

of Nalon & Dixon (2006) and Degtyarev et al. (2006), which use anti-prenexing

together with simplification, followed by rewriting and renaming to separate

the contexts to which the inference rules are applied.
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3.6.1
Normal Form

Let ' be a formula in the language of Petri-PDL. The set of inference

rules are applied to the transformation of ' into a specific normal form, called

Divided Separated Normal Form for Petri-PDL (DSNF
PPDL

), which separates

the contexts (formulae which are true only at the initial state; formulae which

are true in all states) for reasoning. Before applying the transformation, we

require that a formula ' to be in Anti-Prenex Normal Form (APNF), i.e.

when modal operators are moved inwards a formula and only applied to modal

literals. It has been shown by Egly (1994) that the transformation of a given

problem into anti-prenex normal form (i.e. when quantifiers are moved inwards

a formula) results in a better set of clauses for First-Order Logics. The same

approach for modal logics was investigated by Nalon & Dixon (2006), where

it has been shown that anti-prenexing together with simplification may also

result in a better set of clauses for a particular logic if its language allows for

collapsing and/or simplification of modal operators. The application of such a

technique to formulae in the language of Petri-PDL is justified by the axiom

(PC), which allows similar simplifications. The transformation rules into APNF

are given after the following definitions.

Definition 49 Literal

A literal is either >, p or ¬p, for p 2 �. For a literal l of the form ¬p,
where p is a propositional symbol, ¬l denotes p; for a literal l of the form p, ¬l
denotes ¬p. The literals l and ¬l are called complementary literals. A modal

literal is either hs, ⇡il or [s, ⇡]l, where s is a sequence of names, ⇡ is a Petri

Net program, and l is a literal.

Definition 50 Modal term

A modal term is a formula of the form M0 · · ·Mk

l, where l is a literal

and M
i

is of the form [s
i

, ⇡
i

] or hs
i

, ⇡
i

i, 0  i  k, k 2 , where each s
i

is a

sequence of names and ⇡
i

is a Petri Net program.

Note that when k = 0, the literal l is not preceded by any modal operator.

Definition 51 Anti-Prenex Normal Form (APNF)

Let ' and  be formula in the language of Petri-PDL. A formula � is in

Anti-Prenex Normal Form (APNF) if, and only if,

1. � is a modal term; or

2. � is of the form ('^ ), ('_ ), or ('!  ), and ' and  are in APNF;
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3. � is of the form [s, ⇡]', ' is disjunctive (in the form �1 _ · · ·_ �
n

), and

' is in APNF; or

4. � is of the form hs, ⇡i', ' is conjunctive, and ' is in APNF.

We define a function ↵('), where ' is a formula, which produces the

anti-prenex normal form of '. The base case occurs when the formula ' is

already in APNF, that is, ' is a modal term. In this case, ↵(') = '. If the

main operator is modal, it can be distributed over subformulae in the following

cases (where ' and  are formulae):

↵([s, ⇡]('!  )) = ↵([s, ⇡]'! [s, ⇡] )

↵([s, ⇡](' ^  )) = ↵([s, ⇡]' ^ [s, ⇡] )

↵([s, ⇡]¬('!  )) = ↵([s, ⇡]' ^ [s, ⇡]¬ )
↵([s, ⇡]¬(' _  )) = ↵([s, ⇡]¬' ^ [s, ⇡]¬ )
↵(hs, ⇡i('!  )) = ↵(hs, ⇡i¬' _ hs, ⇡i )
↵(hs, ⇡i(' _  )) = ↵(hs, ⇡i' _ hs, ⇡i )

↵(hs, ⇡i¬(' ^  )) = ↵(hs, ⇡i¬' _ hs, ⇡i¬ )

If we have two consecutive modal operators, the function is applied

recursively, where ' is of the form [s0, ⇡0] or hs0, ⇡0i , for any s0 a sequence of

names and ⇡0 a Petri Net program, and  is a formulae which is not in APNF:

↵([s, ⇡]') = ↵([s, ⇡]↵(')) ↵(hs, ⇡i') = ↵(hs, ⇡i↵('))

If the main operator is a modal operator, but the formula inside its scope

is not one of the above, we apply the anti-prenexing function to this formula,

that is:

↵([s, ⇡]') = [s, ⇡]↵(') ↵(hs, ⇡i') = hs, ⇡i↵(')

When the main operator is classical, the transformation function is also applied

recursively. Note that when the polarity of a subformula is negative, we rewrite

the formula in order to make this explicit.

↵(¬[s,⇡]') = ↵(hs,⇡i¬')
↵('!  ) = ↵(¬') _ ↵( )
↵(' ^  ) = ↵(') ^ ↵( )
↵(' _  ) = ↵(') _ ↵( )

↵(¬hs,⇡i') = ↵([s,⇡]¬')
↵(¬('!  )) = (↵(') ^ ↵(¬ ))
↵(¬(' ^  )) = (↵(¬') _ ↵(¬ ))
↵(¬(' _  )) = (↵(¬') ^ ↵(¬ ))
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Because of the axiom (PC) and seriality, simplification of modal operators

can be applied at any step of the transformation into the anti-prenexing normal

form, as follows (where ⇡ = ⇡1 � ⇡2 � · · ·� ⇡
n

, 1  i  n):

↵([s, ⇡
i

][f(s, ⇡
i

), ⇡]') = ↵(hs, ⇡i')
↵([s, ⇡

i

]hf(s, ⇡
i

), ⇡i') = ↵(hs, ⇡i')
↵(hs, ⇡

i

i[f(s, ⇡
i

), ⇡]') = ↵(hs, ⇡i')
↵(hs, ⇡

i

ihf(s, ⇡
i

), ⇡i') = ↵(hs, ⇡i')

Note that, at the end of the transformation, ↵(') is in both APNF and in

Negated Normal Form (that is, a formula where the connectives are restricted

to ¬, _, ^, and the modal operators and the negations are applied only

to propositional symbols). The proof that the transformation into APNF is

correct and satisfiability preserving is given by the following lemma.

Lemma 52 Let ' be a formula in the language of Petri-PDL and let ↵(')

be a formula resulting from the transformation of ' into APNF. If � ', then

� ↵(').

Proof: Suppose ' is a Petri-PDL formula.

1. If ' is atomic it is straightforward from Petri-PDL language definition.

2. If ' is in the form ¬� it is straightforward from Petri-PDL language

definition.

3. If ' is in the form [s, ⇡](�!  ) it is straightforward from axiom (K).

4. If ' is in the form [s, ⇡](� ^  ) it is straightforward from axiom (K).

5. If ' is in the form [s, ⇡]¬(�!  ) it is straightforward from the standard

implication equivalence by means of conjunction and axiom (K).

6. If ' is in the form [s, ⇡]¬(�_ ) it is straightforward from the De Morgan

rule and axiom (K).

7. If ' is in the form hs, ⇡i(�!  ) it is straightforward from axiom (K).

8. If ' is in the form hs, ⇡i(� _  ) it is straightforward from axiom (K).

9. If ' is in the form hs, ⇡i¬(� ^  ) it is straightforward from De Morgan

rule and axiom (K).

10. If ' is in the form [s, ⇡]� it is straightforward from Petri-PDL language

definition.
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11. If ' is in the form hs, ⇡i� it is straightforward from Petri-PDL language

definition.

12. If ' is in the form ¬[s, ⇡]� it is straightforward from axiom (Du).

13. If ' is in the form ¬hs, ⇡i� it is straightforward from axiom (Du).

14. If ' is in the form �!  it is straightforward from Petri-PDL language

definition.

15. If ' is in the form � _  it is straightforward from Petri-PDL language

definition.

16. If ' is in the form � ^  it is straightforward from Petri-PDL language

definition.

17. If ' is in the form ¬(� !  ) it is straightforward from the standard

implication equivalence by means of conjunction.

18. If ' is in the form ¬(� ^  ) it is straightforward from De Morgan rule.

19. If ' is in the form ¬(� _  ) it is straightforward from De Morgan rule.

20. If ' is in the form [s, ⇡
i

][f(s, ⇡
i

), ⇡]� it is straightforward from axiom

(PC).

21. If ' is in the form [s, ⇡
i

]hf(s, ⇡
i

), ⇡i� it is straightforward from axiom

(PC).

22. If ' is in the form hs, ⇡
i

ihf(s, ⇡
i

), ⇡i� it is straightforward from axiom

(PC).

23. If ' is in the form hs, ⇡
i

i[f(s, ⇡
i

), ⇡]� it is straightforward from axiom

(PC).

As all the rules preserve the satisfiability, then if � ', then � ↵(') ⌅

In order to separate the contexts for reasoning, we define a Petri-PDL

problem to be a tuple hI,Ui, where I, the set of initial formulae, is a finite

set of non-modal propositional formulae; and U , the set of universal formulae,

is a finite set of formulae in the language of Petri-PDL. We will extend the

frame model for Petri-PDL by including an initial world w0 2 W . So, let

M = hW,w0, R⇡

,M,Vi be a Petri-PDL model where w0 2 W is the initial

world (an initial state for the Petri Net, corresponding to its initial markup).

We say that a Petri-PDL problem hP i = hI,Ui is satisfied in M (denoted by
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M � hP i) if and only if M,w0 � I and, for all w0 2 W , M,w0 � U (where

satisfiability of sets is defined in the usual way).

Let ↵(') be a formula in APNF. The set of resolution-based inference

rules, given in Section 3.6.2 are applied to the transformation of ↵(') into a

clausal Petri-PDL problem, which is formally defined as Petri-PDL problem

hI,Ui, where I, the set of initial clauses, contains formulae in the form of
W

i

l
i

, i 2 , where l
i

are literals; and U , the set of universal clauses, contains

formulae in the form of
W

i

l
i

_
W

j

[s
j

, ⇡
j

]l0
j

_
W

k

¬[s0
k

, ⇡0
k

]l00
k

, i, j, k 2 , where

l
i

, l0
j

, l00
k

are literals, s
i

, s
j

, s0
k

are sequences of names, and ⇡
i

, ⇡
j

, ⇡0
k

are Petri Net

programs.

The transformation of a formula ' into the clausal form starts by taking

the problem h{t0}, {t0 ! ↵(')}i, where t0 is a new propositional symbol (i.e. a

propositional symbol that does not occur in '), and applying exhaustively the

following rewriting rules (where t is a literal, t1 is a new propositional symbol,

and  1, 2 are formulae):

(⌧1) hI,U [ {t ! ( 1 ^  2)}i �! hI,U [ {t !  1, t !  2}i;

(⌧2) hI,U [ {t ! ( 1 _  2)}i �! hI,U [ {t ! ( 1 _ t1), t1 !  2}i, if  2 is

not a literal;

(⌧3) hI,U [ {t ! hs, ⇡i 1}i �! hI,U [ {t ! hs, ⇡it1, t1 !  1}i, if  1 is not

a literal;

(⌧4) hI,U [ {t ! [s, ⇡] 1i�! hI,U [ {t ! [s, ⇡]t1, t1 !  1}i, if  1 is not a

literal .

Note that we take conjunctions and disjunctions as being associative and

commutative. Thus, for instance, the transformation rule (⌧3.6.1) also applies

when  1 is not a literal. As a final step, we replace the modal operator hs, ⇡i
by its dual and rewrite implications as disjunctions, that is, we apply the

following rewriting rules (where t, l are literals, D is a disjunction of literals

and/or modal literals, s is a sequence of names, and ⇡ is a Petri Net program):

(⌧5) hI,U [ {t ! hs, ⇡il}i �! hI,U [ {t ! ¬[s, ⇡]¬l}i;

(⌧6) hI,U [ {t ! D}i �! hI,U [ {¬t _D}i.

Note that simplification takes place at any step of transformation, that

is, we remove occurrences of the constants > and ? as well as duplicates of

formulae in conjunctions and disjunctions. This is achieved by exhaustively ap-

plying the following simplification rules (where conjunctions and disjunctions

are commutative, ' is a formula, s is a sequence of names, and ⇡ is a Petri

Net program):
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' ^ > �! '

' _ > �! >
' ^ ? �! ?
' _ ? �! '

¬> �! ?
¬? �! >

' _ ' �! '

' ^ ' �! '

' _ ¬' �! >
' ^ ¬' �! ?
[s, ⇡]> �! >
[s, ⇡]? �! ?
¬¬' �! '

Lemma 53 Let ' be a well-formed formula in the language of Petri-PDL.

' is satisfiable if and only if the transformation of ↵(') into DSNF

PPDL

is

satisfiable.

Proof: This proof is straightforward from Lemma 52 and from the axiomat-

isation of Petri-PDL. ⌅

3.6.2
Resolution rules

Let ' be a formula in the language of Petri-PDL and let ⌧(') be the

set of clauses resulting from the transformation of ' into its normal form, as

given in the previous section. The resolution method for Petri-PDL, named

RES
PPDL

, consists of applying the following inference rules to clauses in ⌧(')

(where C,C 0 are disjunctions of literals, D,D0 are disjunctions of literals or

modal literals, l, l
i

, 0  i  n, are literals, s is a sequence of names, and ⇡, ⌘

are Petri Net programs).

ires C _ l 2 I [ U
C 0 _ ¬l 2 I
C _ C 0 2 I

ures C _ l 2 U
C 0 _ ¬l 2 U
C _ C 0 2 U

(3-13)

ser1 D _ [s, ⇡]l 2 U
D _ ¬[s, ⇡]¬l 2 U

(3-14)

ser2 D _ ¬[s, ⇡]l 2 U
l1 _ . . . _ l

n

_ l 2 U
D _ ¬[s, ⇡]¬l1 _ . . . _ ¬[s, ⇡]¬l

n

2 U
(3-15)
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ref D _ [s, ⇡]l 2 U
if f(s, ⇡) = ✏ D _ l 2 U

(3-16)

comp D _ ¬[s, ⇡]l 2 U
if ⇡ ✓ ⌘ and D0 _ [r, ⌘]l 2 U
f(s, ⇡

b

) $ f(r, ⇡
b

) D _ D0 2 U
(3-17)

The inference rules ires and ures (3-13) are equivalent to classical res-

olution applied within each context of a given problem. The inference rules

ser1 (3-14) and ser2 (3-15) deal with seriality: a Petri Net cannot lead to a

contradicting state. The inference rule ref (3-16) corresponds to reflexivity

and it can only be applied if f(s, ⇡) = ✏. The last inference rule, comp (3-17),

deals with compositionality: if ⇡ is a Petri subnet of ⌘ (as a graph), then we

cannot have that both ⇡ and ⌘ lead to a contradicting state, through sequences

of names s and r where for all basic program of ⇡ = ⇡1 � · · ·� ⇡
n

,f(s, ⇡
i

) 6= ✏

i↵ f(r, ⇡
i

) 6= ✏, i = 1, . . . , n. Note that when ⇡ = ⌘ and s = r, the inference

rule comp is an instance of classical resolution. The next lemma shows that

the resolution rules for Petri-PDL are sound.

Lemma 54 The resolution rules for Petri-PDL are sound.

Proof: Soundness of ires and ures (3-13) follow from soundness of the res-

olution inference rule for propositional logic (Robinson, 1965). Soundness of

ser1 (3-14) and ser2 (3-15) follow from (PC) and (Du). Soundness of ref (3-16)

follows from (R
✏

). Soundness of comp (3-17) follows from (PC). ⌅

Definition 55 Derivation

A derivation from a Petri-PDL problem in DSNF

PPDL

P = hI,Ui by

RES

PPDL

is a sequence P0,P1,P2, . . . of Petri-PDL problems such that P0 = P,

P
i

= hI
i

,U
i

i, and P
i+1 is either

– hI
i

[D,Ui, where D is the conclusion of an application of ires; or

– hI
i

,U
i

[ Di, where D is the conclusion of an application of ures, ser1,

ser2, ref, or comp;

and D 6= >.

We note that the resolvent D is only included in the set of clauses if

it is not a tautology. Also, a resolvent is always kept in the simplest form:

duplicate literals are removed; > and ? are removed from conjunctions and

disjunctions with more than one conjunct/disjunct,respectively; conjunctions

(resp. disjunctions) with either complementary literals or ? (resp. >) are

simplified to ? (resp. >).
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Definition 56 Refutation

A refutation for a Petri-PDL problem in DSNF

PPDL

P = hI,Ui (by

RES

PPDL

) is a derivation from P such that for some i � 0, P
i

= hI
i

,U
i

i
contains a contradiction, where a contradiction is given by either ? 2 I

i

or

? 2 U
i

.

A derivation terminates if, and only if, either a contradiction is derived

or no new clauses can be derived by further application of resolution rules of

RES
PPDL

.

Theorem 57 The resolution method for Petri-PDL is sound.

Proof: Soundness of the resolution method for Petri-PDL follows from

Lemma 53, which shows that transformation into the normal form is satisfiab-

ility preserving, and from Lemma 54, which shows that each of the resolution

inference rules is satisfiability preserving. ⌅

3.6.3
Usage example

Suppose we want to test the formula

' = ([s, ⇡1 � ⇡2](p ! q) !
(([s, ⇡1][f(s, ⇡1), ⇡1 � ⇡2]p ^ [s, ⇡2][f(s, ⇡2), ⇡1 � ⇡2]p) !
([s, ⇡1][f(s, ⇡1), ⇡1 � ⇡2]q ^ [s, ⇡2][f(s, ⇡2), ⇡1 � ⇡2]q)))

for unsatisfiability. Firstly, we transform ¬' into APNF, which results in:

↵(') = [s, ⇡1 � ⇡2](¬p _ q) ^ hs, ⇡1 � ⇡2ip ^ hs, ⇡1 � ⇡2i¬q

The transformation of ↵(') into the normal form results in the following

clauses:

1. t0 [I]
2. ¬t0 _ [s, ⇡1 � ⇡2]t1 [U ]
3. ¬t1 _ ¬p _ q [U ]

4. ¬t0 _ ¬[s, ⇡1 � ⇡2]¬p [U ]
5. ¬t0 _ ¬[s, ⇡1 � ⇡2]q [U ]

The refutation proceeds as follows:

6. ¬t0 _ ¬[s, ⇡1 � ⇡2]t1 _ ¬[s, ⇡1 � ⇡2]¬q [U ]ser2, 4, 2
7. ¬t0 _ ¬[s, ⇡1 � ⇡2]t1 [U ]comp, 6, 5

8. ¬t0 [U ]comp, 7, 2

9. ? [I]ires, 8, 1
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3.7
Some examples

In this section it follows some examples of applications.

3.7.1
General applications

Let B be a proposition that means “the markup of the current state

includes (b)” and C means “the markup of the current state includes (c)”. The

token of b by itself in the Petri Net defined in the Figure 3.2 does not implies

that v is achieved: h(b), abt2ciB ! ¬h(c), abt2ciC.

a

b

c

t2

Figure 3.2: A Petri Net where only b has a token

A more abstract example may be composed as: looking at the Petri

Net defined in the Figure 3.3, the upper left place (`) is the power button

of a vending machine; the bottom left is the coin inserted (m) and the

bottom right is the chocolate output (c); if the vending machine is powered

on, always when a coin is inserted you will have a chocolate outputed:

h(`,m), `mt2x�xt3yc� yt1`i> ! h(`,m), `mt2xih(x), `mt2x�xt3yc� yt1`i>.

`

m

x

y

c

t2 t3

t1

Figure 3.3: A Petri Net for a chocolate vending machine

In the Petri Net example in Figure 2.2, it is possible to say that, in the

initial mark, it is not possible that the elevator goes down a floor. That is,

h(U,U, U, U), Ut1D �Dt1Ui> ! ¬h(U,U, U, U, U), Ut1D �Dt1Ui>; and that

it the elevator goes up a floor it can down too, as in h(U,U, U, U), Ut1D �
Dt1Ui> ! h(U,U, U,D), Ut1D �Dt1Ui>.

Concerning the Petri Net example in Figure 2.3, we can say that when

a message is being received, it is not possible to receive another at the same

time: h(p1, p3, p4), p1t3p1p2�p2t1p3�p3p4t2p5�p5t1p4i> ! ¬h(p3, p4), p1t3p1p2�
p2t1p3 � p3p4t2p5 � p5t1p4i>.
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3.7.2
Game modelling and properties verification

This section presents an example of game modelling using Petri Nets and

how to verify properties using Petri-PDL. Game formalization that makes use

of logical tools to infer properties lacks in some points depending on the kind

of the game modelled (Chen et al., 2013).

In the work of de de Oliveira et al. (2011) is presented a formalization

to specify and infer properties of a RPG game, the method uses a WorkFlow

Petri Nets (WFPN) with linear logic. Although this method is sound it is

not complete. Other disadvantage in this formalism involves the restriction

of resources used in each transition of the WorkFlow Petri Net. Once the

soundness of the formalism is inherited from the soundness of Linear Logic, it

lacks on represent the use of a same resource despite of the representation in

a Petri Net due to its markup.

One case study in which the Petri Nets can be applied to model is the

“Rock-Paper-Scissors” game. It is presented in Figure 3.4 where, once a player

inserts a coin in a supposed machine (i.e. the place “Coin” has a token), a

transition may fire and the place “Player1” (the gamer) and “Player2” (the

machine bot) will have a token. Now the player can select one of the options

at the same time that the machine can choose one. If the user wins, a token

will be placed at “Win1” and the user will be able to play again; if he loses, at

the place “Win2” or the game restarts if there is a draw match.

R1 S2 P1 R2 S1 P2

Win1

Win2

Draw

Player1 Player2

Coin

Figure 3.4: Petri Net for “Rock-Paper-Sicissors” game

Consider the Petri Net represented in Figure 3.5(a). The upper left place
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(H) is the handle to open a door to the next stage in the actual game level;

the bottom left is the key (K) takes by the player in the previous level and the

bottom right is the door opening (O); if the key is in the lock, always when the

handle is lowered the door for the next stage is open. A token in place x means

that the door is unlocked and one in y that the player is handling the door.

The formula h(HKKK), HKt2x � xt3yO � yt1Hi' models this actual state

of the Petri Net program in Figure 3.5(a) where after the Petri Net program

stops ' will be true in a future state. Supposing that h(HKKK), HKt2x �
xt3yO � yt1Hi' is true, the only enabled transition is t2, so we have that

h(HKKK), HKt2xih(KKx), HKt2x�xt3yO�yt1Hi' is true; then t2 fires and

we have that h(KKx), HKt2x�xt3yO�yt1Hi' is true. Now the only enabled

transition is t3, so we have that h(KKx), xt3yOih(KKOy), HKt2x� xt3yO�
yt1Hi' will be true and, after the firing of t3, the formula h(KKOy), HKt2x�
xt3yO � yt1Hi' will be true. Finally t1 is the only enabled transition. Hence

we can now verify that h(KKOy), yt1Hih(KKOH), HKt2x�xt3yO�yt1Hi'
will be true where after the firing of t1 will achieve the markup of Figure 3.5(b)

and h(KKOH), HKt2x � xt3yO � yt1Hi' will be true. So we can verify

that if h(HKKO), HKt2x � xt3yO � yt1Hi' is true in an actual state,

h(HKKO), HKt2x � xt3yO � yt1Ki' is true in a future state (i.e. one door

is opened, the player has two keys and it is possible to unlock another door).

H

K

x

y

O

t2 t3

t1

3.5(a): Initial markup

H

K

x

y

O

t2 t3

t1

3.5(b): After some firings

Figure 3.5: Two markups of a Petri Net for a game where doors separate stages

Note that the player has three keys and, once one of them is used the

resource amount is decreased (i.e. one token moves out from place H) and it

is possible to set the amount of doors opened (i.e. the amount of tokens in O).

There is, it is possible to deal with count of resources and its consumption.

Another property inherited from Petri Nets is the simplified way to deal

with concurrence. In a scenario where the player cannot only open a door (as

in Figure 3.5(a)) but there is also the possibility to take an object disposed into

the room, as in Figure 3.6, where place B denotes that the user is taking same

object in the current room. If t01 fires then t2 will be unable to fire. So, it is

possible to model in Petri-PDL that when a player is taking something in the

current room he cannot open a door. So, modelling the scenario in Figure 3.6
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in a formula  we have that  = h(KKK,B), HKt2x�xt3yO�yt1H�Ht01B�
Bt001Hi> ! h(KKK,B), HKt2xih✏, HKt2x�xt3yO�yt1H�Ht01B�Bt001HiA,
where A is some property true after the running of this program. Looking

to the left side of the implication, as t001 is able to fire it is straightforward

that the left side of the implication is true by the semantical notion of

satisfaction of Petri-PDL. But, for the right side of the implication, t1 is

not able to fire, so cannot be true, hence its negation is true and the

formula is valid. Note that the ✏ in the second modality of the right side

of the implication is the result of the firing function for f(KKKB,HKt2x).

Using the Resolution system for Petri-PDL to verify if this formula holds we

have that ↵( ) = h(KKKB), HKt2x � xt3yO � yt1H � Ht01B � Bt001HiA ^
[(KKK,B), HKt2x][✏, HKt2x� xt3yO � yt1H �Ht01B �Bt001H]¬A (i.e.  in

the APNF). The transformation of ↵( ) into the normal form results in the

following clauses:

1. t0 I
2. ¬t0 _ ¬[(KKKB), HKt2x� xt3yO � yt1H �Ht01B �Bt001H]¬A [U ]
3. ¬t0 _ [(KKK,B), HKt2x]t1 [U ]
4. ¬t1 _ [✏, HKt2x� xt3yO � yt1H �Ht01B �Bt001H]t2 [U ]
5. ¬t2 _ ¬A [U ]

The refutation proceeds as follows:

6. ¬t0 _ ¬t1 _ [✏, HKt2x� xt3yO � yt1H �Ht01B �Bt001H]¬A [U , ser2, 4, 5]
7. ¬t0 _ ¬t1 [U , comp, 6, 2]

8. ¬t0 _ t1 [U , ref, 3]
9. ¬t0 [U , ures, 7, 8]

10. ? [I, ires, 1, 9]

The same methodology may be applied to many board games.

H

K

x

y

O

B

t2 t3

t1

t01

t001

Figure 3.6: A Petri Net for a game where the user open doors with keys
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3.8
Petri Nets modelling limitations

As will be presented in the next chapter, ordinary Petri Nets are not

able to deal with many situations involving time. That is no way to model a

scenario in which some transition fires necessarily more than others. To increase

the expressiveness of the logic, we will introduce an extension of Petri Nets

(Stochastic Petri Nets) and present an extension of Petri-PDL to deal with

this kind of Petri Nets.
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