
2
Definitions

This chapter presents the theoretical background and terminology used

in this thesis. Section 2.1 presents the logical definitions used in this work

followed by the probabilistic and statistical definitions in Section 2.2. These

notions are required to the fully comprehension of the logics in here proposed

as well as the PDL and Petri Net systems adopted in sections 2.3.1 and 2.3.2.

2.1
Basic logical definitions

The definitions in this section follows the presentation in the work

of Goldblatt (1992a). We will use the notation of Backus-Naus form (BNF)

to define the syntax of the languages. A BNF statement is in the form

“hvariable1i ::= expression” where “atom” is an element of the alphabet of

the language, “::=” means “produces” or “is replaced by” and “expression”

is a composition of variables and elements of the alphabet with a symbol for

alternative “|.”

Definition 1 Propositional Logic language

The language of propositional logic with a set of atomic formulas is

defined by

hformulai ::= a | ? | ¬hformulai | hformulai ^ hformulai
where a 2 .

We denote by � is the set of formulas (strings generated by the above

grammar).

Definition 2 Modal Logic language

The syntax of modal logic includes the symbol ⇤ and is defined by

hformulai ::= a | ? | ¬hformulai | hformulai ^ hformulai | ⇤hformulai
and ⇤' may be read as “it is necessarily true that '.”

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 15

2.2
Probabilistic and statistical definitions

The definitions in this section follow the presented in the work of James

(2006).

Definition 3 Random experiment

A random experiment is a uncontrolled and reproducible observation in

a finite set of possible observable results.

Definition 4 Sample space

Given a random experiment, the sample space, named ⌦, is the set of all

possible observable results.

Definition 5 Event

Let w, with ! ✓ ⌦ be a set denoting an event of ⌦. If ! is a singleton

set, ! is elementary. If ! = ⌦, then Pr(⌦) = 1 (the probability of ⌦ is 1) and

! is certain; if ! = ; it is an impossible event, Pr(;) = 0.

Definition 6 Real random variable

A real random variable X is a function X : ⌦! that maps the results

of a random experiment in where ⌦ is the sample space.

From now on when we say random variable it is a real random variable.

Definition 7 Occurrence of a random variable

An occurrence of a random variable X : ⌦ ! is x 2 , the result of

the random experiment that X maps.

A random variable is characterised by how its values are distributed: its

distribution. Knowing the distribution of a random variable X is equivalent to

be able to compute the probability of belonging itself in a sample space A.

Definition 8 Accumulated distribution function

A function F (t) = Pr(X  t), t 2 characterises a probability

distribution, namely it is an accumulated distribution function, if it satisfies

the following properties.

(i) It is a non-decreasing function: for all t1 < t2, F (t1)  F (t2).

(ii) It is continuous to the right: if t
n

t (t
n

as a limit ant for t) where

n!1 then F (t
n

)! F (t);

(iii) lim
t!�1 F (t) = 0 and lim

t!1 F (t) = 1.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 16

Definition 9 Continuous random variable

Given a random variable X and its accumulated distribution function

F (t), the probability density function of X is f(t) = @F (t)/@t, that defines a

continuous random variable if f(t) exists, satisfying the following properties.

(i) It is always positive: f(t) � 0.

(ii) Its integral in is 1, so
R

f(t)dt = 1.

In this work we use only continuous random variables. So, when referring

only to random variables it means continuous random variables.

Definition 10 Random variables with joint distribution

In a random experiment where the interest leads to the joint behaviour of

two or more random variables, namely (X1, X2, . . . , Xn

), the probability density

function is characterised by a function f
X1,X2,...,Xn(t1, t2, . . . , tn) where

(i) f
X1,X2,...,Xn is not negative;

(ii)
R
· · ·

R
f
X1,X2,...,Xn(t1, t2, . . . , tn)dt1dt2 . . . dtn = 1.

Definition 11 Expectation of a random variable

The expectation of a random variable X is a weighted average where

the weights are given by the probabilities Pr(X = t). It is equivalent to

[X] =
R

tf(t)dt, if this integral exists.

Definition 12 Expectation of a function

Given X a random variable and (X) : ! a function, the expecta-

tion of (X) is [(X)] =
R
 (t)f(t)dt, if this integral exists.

Definition 13 Conditional probability

Given X and Y random variables. The conditional probability Pr(X 
x | Y = y) is defined as

Pr(X  x and Y = y)

Pr(Y = y)
.

Definition 14 Conditional expectation

The conditional expectation is defined as E[X | Y] =
R

xf(x | Y = y)dx.

If X and Y have a joint distribution, then

f(x | Y = y) =
f
XY

(x, y)

f
Y

(y)
.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 17

Definition 15 Exponential distribution

A random variable X follows an exponential distribution e(�) of rate �

if its density function is

f(t | �) =
(
�e��t if t � 0

0 if t < 0.

such that � 2 ⇥, where ⇥ = + is the parametric space and t 2 .

Definition 16 Stochastic process

A Stochastic Process {S(x) : x 2 d}, d � 1 is a collection of random

variables where x 2 d is the index of each random variable S(·).

Definition 17 Markov Chain

A Markov Chain is a stochastic process {S(x) : x 2 d}, d � 1 where the

conditional probability distribution of any future states of S(x) depends only

on the actual state. The process is called “memoryless” (positional).

Definition 18 Continuous Time Markov Chain (CTMC)

A Continuous Time Markov Chain is a Markov Chain {S(x) : x 2
d}, d � 1 such that the distribution of the collection of random variables

is continuous.

2.3
Propositional Dynamic Logic and Petri Nets

This section presents a brief overview of two topics on which the devel-

opment of this thesis is based on. First, we make a brief review of the syntax

and semantics of PDL (Harel et al., 2000; Harel, 1980; Fischer & Ladner,

1979). Second, we present the Petri Nets formalism and its variant, Marked

Petri Nets; hence, the Petri Nets approach used in this work (de Almeida &

Haeusler, 1999) is presented.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 18

2.3.1
Propositional Dynamic Logic

In this section, we present the syntax and semantics of PDL.

Definition 19 PDL language

The PDL language consists of a set � of countably many proposition

symbols, a set ⇧ of countably many basic programs, the boolean connectives

¬ and ^, the program constructors ;, [and ? and a modality h⇡i for every

program ⇡. The formulas are defined as follows:

' ::= p | > | ¬' | '1 ^ '2 | h⇡i', with ⇡ ::= a | ⇡1; ⇡2 | ⇡1 [⇡2 | ⇡?,

where p 2 � and a 2 ⇧.

In all the logics that appear in this paper, we use the standard abbrevi-

ations ? ⌘ ¬>, '_� ⌘ ¬(¬'^¬�), '! � ⌘ ¬('^¬�) and [⇡]' ⌘ ¬h⇡i¬'.

Definition 20 PDL frame

A frame for PDL is a tuple F = hW,R
a

i where

– W is a non-empty set of states;

– R
a

is a binary relation over W , for each basic program a 2 ⇧;

– We can inductively define a binary relation R
⇡

, for each non-basic

program ⇡, as follows

– R
⇡1;⇡2 = R

⇡1 �R⇡2,

– R
⇡1[⇡2 = R

⇡1 [R
⇡2,

– R
⇡

? = R?

⇡

, where R?

⇡

denotes the reflexive transitive closure of R
⇡

.

Definition 21 PDL model

A model for PDL is a pair M = hF ,Vi, where F is a Petri-PDL frame

and V is a valuation function V : �! 2W .

The semantical notion of satisfaction for PDL is defined as follows:

Definition 22 PDL satisfaction notion

Let M = hF ,Vi be a model. The notion of satisfaction of a formula '

in a model M at a world w, notation M, w � ', can be inductively defined as

follows:

– M, w � p i↵ w 2 V(p);

– M, w � > always;

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 19

– M, w � ¬' i↵ M, w 6� ';

– M, w � '1 ^ '2 i↵ M, w � '1 and M, w � '2;

– M, w � h⇡i' i↵ there is w0 2 W such that wR
⇡

w0 and M, w0 � '.

PDL has a Tableaux-based deductive system (De Giacomo & Massacci,

1998) with a web-based implementation (Schmidt, 2004). Notice that First

Order PDL is undecidable (Harel et al., 2000) and that its SAT problem is

EXPTime-Complete (proved by a reduction of the Two-Person Corridor Tiling

problem – Blackburn et al., 2001). As usage examples we have the following.

Algorithm 1 receives as in input two boolean values A and B and

computes a boolean expression. This program can be modelled as [(C �
¬A _ B); (¬B) [(¬A)]w where w will be the boolean value returned. This

formula is equivalent to [(C � ¬A_B)][(¬B)]w^ [(C � ¬A_B)][(¬A)]w.

Data: Two boolean values A and B
Result: A boolean value
C � ¬A _ B;
if ¬C _ (A ^B) then

¬B;
else

¬A;
end

Algorithm 1: Evaluates a boolean expression

Some programs that may be expressed as first order formulas can be

encoded in PDL. Concerning algorithm 2 that receive as input three numbers

and computes the average of the two smallests and sum this result with the

biggest.

Supposing p as a propositional symbol that means that “the program

stopped”, verify if this program stops is equivalent to verify if the formula

[((m � (y + z)/2); (r � m + x)) [((m � (x + z)/2); (r � m +

y)) [((m � (x + y)/2); (r � m + z))]p is valid. Notice that it is

equivalent to compute if [((m � (y + z)/2); (r � m + x))]p ^ [((m �
(x + z)/2); (r � m + y))]p ^ [((m � (x + y)/2); (r � m + z))]p or to

compute if [((m � (y+ z)/2)][(r � m+x))]p^ [((m � (x+ z)/2)][(r �
m+ y))]p ^ [((m � (x+ y)/2)][(r � m+ z))]p are valid.

Supposing q a propositional symbol that some property desired to verify

if it is true after the running of algorithm 3, it is equivalent to verify if the

formula [(r � 1); (r � r ⇥ x)?; (r � r + 1)]q is true. It is also equivalent

to compute if the formula [(r � 1)][(r � r ⇥ x)?][(r � r + 1)]q is true.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 20

Data: Three real numbers x, y and z
Result: Average of the two smallests plus the biggest
if x � y and x � z then

m � (y + z)/2;
r � m+ x;

else
if y � x and y � z then

m � (x+ z)/2;
r � m+ y;

else
m � (x+ y)/2;
r � m+ z;

end

end
Algorithm 2: Computes the average of two numbers in three plus the
biggest

Data: Two integer numbers x and y
Result: xy + 1
r � 1;
for i = 1 to y do

r � r ⇥ x;
end
r � r + 1;

Algorithm 3: Computes the successor of the power of a number by another

2.3.2
Petri Nets

A Petri Net (Petri, 1962) is a 3-tuple P = hP, T, Li, where P is a finite

set of places, T is a finite set of transitions with P \T = ; and P [T 6= ; and
L is a function which defines directed edges between places and transitions

and assigns a w 2 that represents a multiplicative weight for the transition,

as L : (P ⇥ T) [(T ⇥ P)! (in this work we consider all w = 1).

Marked Petri Nets

A Marked Petri Net is a 4-tuple P = hP, T, L,M0i as above but for M0

as an initial markup (the amount of tokens distributed in each place). In this

work when referring to a Petri Net it is a Marked Petri Net.

The flow of a Petri Net is defined by a relation F = {(x, y) | L(x, y) > 0}.
Let s 2 P and t 2 T . The preset of t, named •t, is defined as •t = {s 2
P : (s, t) 2 F}; the postset of t, named t• is defined as t• = {s 2 P : (t, s) 2 F}.
The preset of s, named •s, is defined as •s = {t 2 T : (t, s) 2 F}; the postset

of s, named s• is defined as s• = {t 2 T : (s, t) 2 F}.

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 21

Given a markup M of a Petri Net, we say that a transition t is enabled

on M if and only if 8x 2 •t,M(x) � 1. A new markup generated by setting a

transition which is enabled is defined as

M
i+1(x) =

8
><

>:

M
i

(x)� 1, 8x 2 •t \ t•

M
i

(x) + 1, 8x 2 t• \ •t

M
i

(x), 8x /2 {(•t \ t•) [(t• \ •t)}
. (2-1)

A program behaviour is described by the set M = {M0, . . . ,Mn

} of a Petri

Net markups.

A Petri Net may be seen in a graphical representation, using a circle to

represent each s 2 P , a rectangle to represent each t 2 T , the relations defined

by L as edges between places and transitions. The amount of markups from

M are represented as filled circles into the correspondent places. An example

of a valid Petri Net is in Figure 2.1.

Figure 2.1: Example of a valid Petri Net

Just as an example, the Petri Net on Figure 2.2 represents the operation

of an elevator for a building with five floors. A token in the place U indicates

that the elevator is able to go up one floor; and, when T1 fires, a token goes to

D, so the elevator can go down a floor. If the elevator goes down a floor (i.e.

T2 fires) a token goes to the place U . Figure 2.2 illustrates the Petri Net with

its initial markup.

U

D

T1T2

Figure 2.2: Petri Net for a simple elevator of five floors

Another example is in Figure 2.3, which represents a SMS send and

receive of two cellphones. When the user sends a SMS from his cellphone, it

goes to his phone bu↵er (i.e. T1 fires and the token goes to p2). When the

phone sends the message to the operator (i.e. T2 fires) it goes to the operator

bu↵er; so, the messages must be sent to the receiver, but the receiver is able

to receive only one message at a time. If there is a message in the operator

bu↵er and the receiver is not receiving other message (i.e. there is at least a

token in p3 and there is a token in p4), the receiver can receive the message

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 22

(i.e. T3 fires). At this point the user cannot receive other messages (i.e. there

is no token in p4, so T3 is not enabled); but, after the complete receive of the

message (i.e. T4 fires), the receiver is able to receive messages again (i.e. there

is a token in p4 and when p3 have at least a token, T3 will be enabled again).

p1

p2

p3

p4

p5

T1

T2

T3

T4

Figure 2.3: Petri Net for a SMS send and receive

Basic Petri Nets

The Petri Net model used in this work is as defined by de Almeida and

Haeusler (de Almeida & Haeusler, 1999). It uses three basic Petri Nets which

define all valid Petri Nets due to its compositions. These basic Petri Nets are

as in Figure 2.4.

X Y

2.4(a): Type 1: t1

X

Y

Z

2.4(b): Type 2:

t2

X

Y

Z

2.4(c): Type 3:

t3

Figure 2.4: Basic Petri Nets

To compose more complex Petri Nets from these three basic kinds of

composition, there is used a gluing procedure (de Almeida & Haeusler, 1999).

The operations involved in this process are Conflict on the Left (Figure 2.5(a)),

Conflict on the Right (Figure 2.5(b)), two cases of Sequence (Figures 2.6(a)

and 2.6(b)), Joint on the Left (Figure 2.6(c)), Joint on the Right (Figure 2.6(d))

and three cases of Repetition (figures 2.7(a), 2.7(b) and 2.7(c)).

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 23

)

2.5(a): Conlict-L

)

2.5(b): Conlict-R

Figure 2.5: Example of application of Conflict rules, where black boxes repres-

ent any valid subnet of a Petri Net

)

2.6(a): Sequence case 1

)

2.6(b): Sequence case 2

)

2.6(c): Joint-L

)

2.6(d): Joint-R

Figure 2.6: Examples of Sequence and Joint rules applications where black
boxes represent any valid subnet of a Petri Net

2.7(a): Case 1 2.7(b): Case 2 2.7(c): Case 3

Figure 2.7: Examples of the three cases of Repetition rule application

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

Extending Propositional Dynamic Logic for Petri Nets 24

As an example, take the Petri Net of Figure 2.8(a). It is a composition of

the basic Petri Nets of figures 2.8(b), 2.8(c) and 2.8(d), where the same place

names indicate that when gluing they will collapse.

a b

c

2.8(a): Composed Petri

Net

b

c

2.8(b): Basic Petri

Net Type 1

a b

c

2.8(c): Basic Petri

Net Type 2

a b

c

2.8(d): Basic Petri Net

Type 3

Figure 2.8: Example of Petri Net composition with its basic Petri Nets

DBD
PUC-Rio - Certificação Digital Nº 1012682/CA

