Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: GERAÇÃO DE ATRIBUTOS GUIADA POR ENTROPIA PARA APRENDIZADO DE ESTRUTURAS
Autor: ERALDO LUIS REZENDE FERNANDES
Colaborador(es): RUY LUIZ MILIDIU - Orientador
Catalogação: 17/DEZ/2014 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=23812&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=23812&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.23812
Resumo:
Aprendizado de estruturas consiste em aprender um mapeamento de variáveis de entrada para saídas estruturadas a partir de exemplos de pares entrada-saída. Vários problemas importantes podem ser modelados desta maneira. O processamento de linguagem natural provê diversas tarefas que podem ser formuladas e solucionadas através do aprendizado de estruturas. Por exemplo, parsing de dependência envolve o reconhecimento de uma árvore implícita em uma frase. Geração de atributos é uma sub-tarefa importante do aprendizado de estruturas. Geralmente, esta sub-tarefa é realizada por um especialista que constrói gabaritos de atributos complexos e discriminativos através da combinação dos atributos básicos disponíveis na entrada. Esta é uma forma limitada e cara para geração de atributos e é reconhecida como um gargalo de modelagem. Neste trabalho, propomos um método automático para geração de atributos para problemas de aprendizado de estruturas. Este método é guiado por entropia já que é baseado na entropia condicional de variáveis locais de saída dados os atributos básicos. Comparamos experimentalmente o método proposto com dois métodos alternativos para geração de atributos: geração manual e métodos de kernel polinomial. Nossos resultados mostram que o método de geração de atributos guiado por entropia é superior aos dois métodos alternativos em diferentes aspectos. Nosso método é muito mais barato do que o método manual e computacionalmente mais rápido que o método baseado em kernel. Adicionalmente, ele permite o controle do seu poder de generalização mais facilmente do que métodos de kernel. Nós avaliamos nosso método em nove datasets envolvendo cinco tarefas de linguística computacional e quatro idiomas. Os sistemas desenvolvidos apresentam resultados comparáveis aos melhores sistemas atualmente e, particularmente para etiquetagem morfossintática, identificação de sintagmas, extração de citações e resolução de coreferência, obtêm os melhores resultados conhecidos para diferentes idiomas como Árabe, Chinês, Inglês e Português. Adicionalmente, nosso sistema de resolução de coreferência obteve o primeiro lugar na competição Conference on Computational Natural Language Learning 2012 Shared Task. O sistema vencedor foi determinado pela média de desempenho em três idiomas: Árabe, Chinês e Inglês. Nosso sistema obteve o melhor desempenho nos três idiomas avaliados. Nosso método de geração de atributos estende naturalmente o framework de aprendizado de estruturas e não está restrito a tarefas de processamento de linguagem natural.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, ABSTRACT, RESUMO, SUMÁRIO E LISTAS PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
CAPÍTULO 6 PDF    
CAPÍTULO 7 PDF    
CAPÍTULO 8 PDF    
CAPÍTULO 9 PDF    
CAPÍTULO 10 PDF    
CAPÍTULO 11 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS PDF