
2

Structure Learning Framework

In this chapter, we describe the structure learning framework and some

known extensions by detailing its application to the dependency parsing task.

In Section 2.1, we formalize this task. Then, in Section 2.2, we present the large

margin structure perceptron, an important extension to the SPerc algorithm.

A powerful extension to the SL framework allows the introduction of latent

structures that are optionally used as auxiliary information to the target task.

We present the latent structure perceptron in Section 2.3. Finally, in Section

2.4, we depict empirical results of the structure perceptron on a Portuguese

DP dataset, comparing its results with other state-of-the-art systems.

2.1

Dependency Parsing

Dependency parsing is to identify the structure underlying a sentence

that describes the syntactic dependencies among its words. This structure

is called dependency tree and is a rooted tree whose nodes are the words

and punctuation marks in the sentence, i.e., the sentence tokens. Let x =

(x0, x1, . . . , xN) be a sentence, where xi is the i-th token and x0 is an artificial

token which is always the root of the dependency tree. For a given input

sentence x, the prediction output space Y(x) is the set of all rooted trees

whose nodes are the tokens in x and the root node is x0. For any dependency

tree y ∈ Y(x), we say that (i, j) ∈ y whenever token xj modifies token xi

in the tree y. The token xi is called head token and the token xj is called

modifier token. Figure 2.1 shows the sentence John saw Mary, its dependency

tree y = {(0, 2), (2, 1), (2, 3)}, and the corresponding head tokens. The head

y

i 0 1 2 3
x root John saw Mary

Head (y(i)) – 2 0 2

Figure 2.1: Dependency tree represented as arcs (y) and as head vector.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 27

vector is an alternative representation for the dependency tree, since each

modifier token has exactly one head given by an incoming edge; except the

artificial root token which has no head. We denote by y(i) the head token of

the modifier token xi within the tree y, that is (y(i), i) ∈ y, for i = 1, . . . , N .

MSTParser (McDonald et al., 2005, 2006; McDonald and Pereira,

2006) is a SL system that employs an online algorithm to train a

dependency parser. MSTParser’s prediction problem is formulated as a linear

discriminative problem. MSTParser learns a w-parameterized edge scoring

function s(x, i, j;w) for every candidate edge (i, j) over x, such that the

prediction problem is to find the maximum-scoring rooted tree, that is

F (x;w) = arg max
y∈Y(x)

∑

(i,j)∈y

s(x, i, j;w). (2-1)

This is equivalent to the well studied maximum branching problem that can

be efficiently solved by Chu-Liu-Edmonds algorithm (Chu and Liu, 1965;

Edmonds, 1967). There is also an improved version of this algorithm by Tarjan

(1977).

Obviously, the edge scoring function is key for MSTParser and has to

generalize over any possible input sentence. For a sentence x and a candidate

edge (i, j), MSTParser determines s(x, i, j;w) by means of M real-valued

features denoted by φm(x, i, j), for m = 1, . . . ,M . These features describe

the dependency between the head token xi and the modifier token xj in a

meaningful and general way. MSTParser uses several binary features like, for

instance, the i-th word, the j-th word, the part-of-speech of the i-th word, the

distance from xi to xj, the relative order between xi and xj, among others.

Then, the edge scoring function is defined as an weighted sum of the edge

features

s(x, i, j;w) = 〈w,Φ(x, i, j)〉,

wherew = (w1, . . . , wM) comprises the model parameters, one for each feature;

andΦ(x, i, j) = (φ1(x, i, j), . . . , φM(x, i, j)) is the feature vector that describes

the dependency edge (i, j). In that way, the learning problem is to determine

a parameter vector w such that the predictor F (x;w) has small empirical risk

on the training data and, at the same time, performs well on unseen data.

MSTParser’s training algorithm is an extension of the margin infused

relaxed algorithm, an online algorithm for multiclass problems. In this work,

we use the averaged structure perceptron algorithm (Collins, 2002b) with a

large margin extension (Fernandes and Brefeld, 2011; McAllester et al., 2011;

Tsochantaridis et al., 2005) as the training algorithm for all tasks. We use

SPerc even for DP, despite the fact that we use MSTParser’s modeling for this

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 28

task.

2.2

Large Margin Training

The structure perceptron algorithm finds a classifier with no concern

about its margin. However, it is well known that large margin classifiers provide

better generalization performance on unseen data. We use a large-margin

generalization of the structure perceptron that is based on the margin rescaling

technique for SVMstruct (Altun et al., 2003; Tsochantaridis et al., 2005). During

training, for an example (x,y), instead of the ordinary prediction problem

(2-1), we use the following loss-augmented prediction function

Fℓ(x,y;w) = arg max
y′∈Y(x)









∑

(i,j)∈y′

s(x, i, j;w)



+ C · ℓ(y,y′)



 , (2-2)

where ℓ(y,y′) ≥ 0 is an appropriate loss function that measures the difference

between a candidate tree y′ and the correct one y; and C is a constant to

balance the weight between the loss function (margin) and the learned edge

weights. We use a loss function that just counts how many incorrect edges are

in the predicted tree y′, which is given by

ℓ(y,y′) =
∑

(i,j)∈y′

1[(i, j) /∈ y]. (2-3)

This loss function can be decomposed along the tree edges and we can thus

rewrite the loss-augmented prediction function as

Fℓ(x,y;w) = arg max
y′∈Y(x)

∑

(i,j)∈y′

(s(x, i, j;w) + C · 1[(i, j) /∈ y]) . (2-4)

This characteristic is desirable because we can define a loss-augmented edge

scoring function as

sℓ(x,y, i, j;w) = s(x, i, j;w) + C · 1[(i, j) /∈ y],

and then we have that

Fℓ(x,y;w) = arg max
y′∈Y(x)

∑

(i,j)∈y′

sℓ(x,y, i, j;w),

which is a maximum branching problem just as the original prediction

problem, but with modified edge weights. In that way, we can still use

Chu-Liu-Edmonds algorithm in the large margin structure perceptron. We

present the pseudo-code of the large-margin structure perceptron algorithm

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 29

in Figure 2.2. The unique modification to the SPerc algorithm is in the

w0 ← 0
t← 0
while no convergence

for each (x,y) ∈ D

ŷ ← argmaxy′∈Y(x)

∑

(i,j)∈y′

(

〈wt,Φ(x, i, j)〉+ C · 1[(i, j) /∈ y]
)

wt+1 ← wt +
∑

(i,j)∈y Φ(x, i, j)−
∑

(i,j)∈ŷ Φ(x, i, j)

t← t+ 1

return 1
t

∑t
k=1w

k

Figure 2.2: Large margin structure perceptron algorithm for dependency
parsing.

computation of edge scores, where we add a constant C to the score of

every incorrect edge. The constant C is a meta-parameter of this algorithm

that allows us to balance the relative importance of the two components

in the objective function. This parameter can be calibrated by means of

cross-validation or a development set.

By using the loss-augmented prediction problem during training, an

example (x,y) implies a model update whenever the current model does not

respect the following margin constraint

s(x,y;w)− s(x,y′;w) ≥ C · ℓ(y,y′), ∀y′ ∈ Y(x),

where s(x,y;w) =
∑

(i,j)∈y s(x, i, j;w) is the score of a whole tree. If a model

respects this prediction margin, then the current predictor F (x;w) separates

the correct output y from every alternative y′ ∈ Y(x) by a margin as large as

C · ℓ(y,y′). In that way, the training algorithm incorporates some information

about the structured empirical risk Rℓ(D,w) of the current model, defined as

Rℓ(D,w) =
∑

(x,y)∈D

ℓ(y, F (x;w)).

2.3

Latent Structure Training

For some structure learning problems, to directly predict an output y

from the input x is a very hard problem, considering any meaningful feature

representation. In some cases, if an appropriate auxiliary structure h is given

for the input x, the prediction problem becomes much easier. In coreference

resolution, for instance, the input comprises a document containing a set of

mentions to real world entities, like companies, places or people. The prediction

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 30

problem is then to cluster mentions that correspond to the same entity. Most

clustering metrics lead to NP-hard optimization problems. Thus, we introduce

coreference trees to represent a cluster of mentions. Giving such tree for an

input document turns prediction into a polynomial problem.

Usually, the auxiliary structures are not explicitly given in the training

data. Thus, we assume that these structures are latent and make use of the

latent structure perceptron (Fernandes and Brefeld, 2011; Yu and Joachims,

2009). The original prediction problem is then split into two sub-problems:

the latent prediction problem Fh(x;wh) and the target prediction problem

Fy(x,h;wy), where wh is the latent model and wy is the target model. In

that way, the final prediction is performed by combining these two predictors

F (x;wh,wy) = Fy(x, Fh(x;wh);wy).

Both the latent and the target predictors have the same form. Not

surprisingly they are based on linear discriminative functions. The latent

prediction function is given by

Fh(x;wh) = arg max
h∈H(x)

〈wh,Φh(x,h)〉,

where H(x) is the set of feasible latent structures for the given input x and

Φh(x,h) is an arbitrary joint feature vector representation of the input and

the latent structure. The target prediction function is then defined as

Fy(x,h;wy) = arg max
y∈Y(x,h)

〈wy,Φy(x,h,y)〉,

where Y(x,h) is the set of feasible output structures for the input x and

the latent structure h; and, Φy(x,h,y) is an arbitrary joint feature vector

representation of the input, the latent structure and the output structure.

In Figure 2.3, we depict the latent structure perceptron algorithm. The

latent structure perceptron is very similar to the original SPerc, which, for

each training instance, performs two major steps: (i) a prediction for the

given input using the current model; and (ii) a model update based on the

difference between the predicted and the ground truth outputs. The latent

SPerc performs an additional step to predict the latent ground truth h̃ using

a specialization of the latent predictor.

Golden latent structures are usually not available in the training data.

However, during training, for a given input x, we have the golden output

structure y. Thus, we predict the constrained latent structure h̃ for the training

instance (x,y) using a specialization of the latent predictor – the constrained

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 31

w0 ← 0
t← 0
while no convergence

for each (x,y) ∈ D

h̃← argmaxh∈H(x,y)〈w
t
h,Φh(x,h)〉

ĥ← argmaxh∈H(x)〈w
t
h,Φh(x,h)〉+ ℓ(h̃,h)

ŷ ← argmax
y′∈Y(x,ĥ)〈w

t
y,Φy(x, ĥ,y

′)〉+ ℓ(y,y′)

wt+1
h ← wt

h +Φh(x, h̃)−Φh(x, ĥ)

wt+1
y ← wt

y +Φy(x, h̃,y)−Φy(x, ĥ, ŷ)

t← t+ 1

wh ←
1
t

∑t
k=1w

k
h

wy ←
1
t

∑t
k=1w

k
y

return (wh,wy)

Figure 2.3: Latent structure perceptron algorithm.

latent predictor – that makes use of y. The constrained predictor finds the

maximum scoring latent structure among all structures that follow the correct

output y. That is, the constrained set H(x,y) ⊂ H(x) does not include latent

structures that lead to incorrect output structures y′ 6= y. The constrained

latent structure h̃ is then used as the ground truth for the current iteration.

Therefore, the model update is determined by the difference between the

constrained structure latent and the document tree predicted by the ordinary

predictor.

The latent structure perceptron algorithm learns to predict latent

structures that help to solve the target task. This algorithm is an instance

of the Concave-Convex Procedure and converges to a local optimum (Yuille

and Rangarajan, 2003; Yu and Joachims, 2009).

2.4

Empirical Results

Recently, dependency parsing has attracted much attention, and fast

progress has been made on pushing the performance of dependency parsers.

In 2005, McDonald et al. (2005) proposes the MSTParser system that

achieves state-of-the-art performance on different datasets. In the next year,

the CoNLL-2006 Shared Task (Buchholz and Marsi, 2006) is devoted to

multilingual dependency parsing, and McDonald et al. (2006) achieves the best

performances by applying an extension of MSTParser that uses second-order

features. MSTParser’s original features are based on individual edges. The

second-order features depend on two edges, which link a head token to

two sibling modifiers. Since this model considers more complex dependencies

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 32

in the output structure, the corresponding prediction problem is also more

complex. In fact, the prediction problem in this case is NP-Hard (McDonald

and Pereira, 2006). McDonald and Pereira (2006) propose an approximation

algorithm to this problem and show that the second-order model outperform

the first-order one, even using approximated prediction. In Table 2.1, we show

the performances of these two systems on the Portuguese CoNLL-2006 dataset.

The performances are reported using the unlabeled attachment score (UAS).

Reference
Learning Basic

UAS
Algorithm Features

Koo et al. (2010) MIRA
3rd order 93.03
2nd order 92.57

McDonald et al. (2005, 2006);
McDonald and Pereira (2006)

MIRA
2nd order 91.36
1st order 90.68

This work SPerc 1st order 90.06

Table 2.1: Performances of dependency parsers using manual templates on
the Portuguese CoNLL-2006 dataset. These systems use different learning
algorithms and also different basic features.

UAS is the percentage of tokens that are attached to the correct head or,

equivalently, the percentage of correct edges in the predicted tree.

Nowadays, as far as we know, the best performing system on the

Portuguese CoNLL-2006 dataset is the dual decomposition system proposed

by Koo et al. (2010). In Table 2.1, we present the performances of this system.

This system introduces a new algorithm to perform approximated prediction

with second- and third-order features. However, the second-order features used

in this system are slightly different from the ones used in MSTParser, as we

can see from the achieved results. The third-order features include grandparent

dependencies, in addition to the sibling dependencies given by second-order

features. All these models are trained with MIRA and complex features are

generated with the manual templates proposed by McDonald and Pereira

(2006).

We also present in Table 2.1 the performance achieved by a first-order

model trained by the SPerc algorithm with the same templates used in

MSTParser. We notice that this system is outperformed by MSTParser, even

when MSTParser is using first-order features. This difference is probably due

to the training algorithm and also to some differences in the feature templates

that are not completely described in the corresponding references.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA




