
4

Entropy-Guided Structure Learning Framework

We show in this chapter that the proposed entropy-guided feature

generation method is naturally integrated to the general structure learning

framework, thus extending it. We again make use of dependency parsing as

an illustrative application to show that the system presented in the previous

chapters is an instantiation of the extended framework.

Structure learning is to learn a function that maps an input x to

the correct output structure y. The output is an arbitrary structure, i.e.,

it comprises many variables with complex interdependencies. In the SL

framework, the prediction problem is recast as an optimization problem of

the form
F (x;w) = arg max

y∈Y(x)
s(x,y;w), (4-1)

where w = (w1, . . . , wM) is the parameter vector of some learned model,

Y(x) is the set of feasible predictions for the given input, and s(x,y;w) is

a w-parameterized scoring function that measures how well an output y fits

the input x. The prediction output space is arbitrary, but the scoring function

must have the following strict form

s(x,y;w) = 〈w,Φ(x,y)〉, (4-2)

where 〈·, ·〉 is the scalar product operator and Φ(x,y) = (φ1(x,y), . . . ,

φM(x,y)) is some joint feature vector representation of the input-output pair.

That is, the scoring function is linear on the feature representation.

4.1

Feature Factorization

Each value φm(x,y) in the feature vector is called the global feature

m, which is the value of a specific feature m on the whole structure.

For dependency parsing, we define the global feature m as φm(x,y) =
∑

(i,j)∈y φm(x, i, j), which is the sum of the local feature values over all edges

in the tree y. In that way, we can rewrite the dependency tree scoring function

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 41

in the general form of (4-2)

s(x,y;w) =
∑

(i,j)∈y

〈w,Φ(x, i, j)〉

=
∑

(i,j)∈y

M
∑

m=1

wm · φm(x, i, j)

=
M
∑

m=1

wm

∑

(i,j)∈y

φm(x, i, j)

=
M
∑

m=1

wm · φm(x,y)

= 〈w,Φ(x,y)〉.

Thus, global DP features are factored along the edges of the dependency tree.

Consequently, the score of a dependency tree in the prediction function is also

factored along its edges. Feature factorization is a key point in SL modeling

and must give rise to efficient prediction algorithms. For DP, for instance, we

end up with a maximum branching problem that is efficiently solved by the

Chu-Liu-Edmonds algorithm.

4.2

Entropy-Guided Feature Generation

The derived feature vector Φ(x,y) is automatically generated by

means of the proposed entropy-guided feature generation method. EFG

induces feature templates by conjoining the available basic features and then

instantiates these templates to generate the derived feature vectors. Basic

features are factored in the same way as derived features. This factorization

determines the prediction scoring function and, consequently, directly affects

the prediction problem, which is the core of the SL framework. Therefore, we

use the same factorization to derive the EFG basic dataset. For each factor

in a structured example, we generate an example in the basic dataset, which

comprises a vector of basic features and a decision variable. These variables

correspond to local decision variables in the prediction problem. Hence, EFG

conjoins basic features that help to discriminante the prediction problem

variables.

For instance, dependency parsing features are factored along candidate

edges. Thus, for each edge in a training sentence, we generate an example in the

basic dataset. And, a binary decision variable is associated with each candidate

edge and determines whether an edge is present in the corresponding decision

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 42

tree. Hence, EFG generates feature templates that are highly discriminative

with respect to dependency edge prediction, which corresponds to the local

decision in dependency parsing.

Each generated template is used to instantiate a feature in Φ(x,y).

Then, this derived feature vector is used to train the structured model.

Therefore, the structured model is linear on the derived feature representation,

which corresponds to a non-linear combination of the basic features. EFG is

completely aligned to the SL framework and it is naturally integrated in it.

4.3

Training Algorithm

There are some training algorithms that learn the parameter vector w

from a given training dataset D = {(x,y)} of correct input-output pairs.

For instance, Collins (2002b) proposed the structured perceptron algorithm,

a generalization of the well known binary perceptron algorithm for sequence

labeling problems. The structured perceptron can be easily applied to any

structured problem. Collins (2002b) also proved that the structured perceptron

converges to a zero-error solution, if one exists. Crammer and Singer (2003)

proposed the margin infused relaxed algorithm (MIRA), an online algorithm to

train structured models for multiclass problems. MIRA can also be extended

for virtually any structured problem and, for instance, is used in MSTParser.

Crammer and Singer (2003) also proved some mistake bounds for an algorithm

class called ultraconservative, which includes MIRA and structure perceptrons.

SVMstruct Tsochantaridis et al. (2004) formulates the structure learning

problem through a regularized max-margin framework, inspired on the binary

support vector machine formulation. They also proposed a cutting plane

method to efficiently solve this problem. However, this method still requires

more computational power and memory than online algorithms like structure

perceptron and MIRA. Additionally, the online algorithms are much simpler

to implement than SVMstruct.

In this work, we use the structure perceptron algorithm (Collins, 2002b).

Given a training sample D = {(x,y)} of correct input-output pairs, the

algorithm generates a sequence of models until convergence. At each iteration,

a training instance is drawn from D and two major steps are performed:

prediction using the current model and model update based on the difference

between the correct and the predicted outputs. We use the large-margin

structure perceptron Fernandes and Brefeld (2011).

During training, instead of the ordinary prediction problem in (4-1), we

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 43

use the following loss-augmented version

Fℓ(x;w) = arg max
y′∈Y(x)

[〈w,Φ(x,y′)〉+ C · ℓ(y,y′)] ,

where ℓ(·, ·) ≥ 0 is an appropriate loss function that measures the difference

between a candidate output and the correct one. For dependency trees,

as presented in Section 2.2, we use a loss function that just counts the

number of incorrect edges in the predicted tree. This loss function factorizes

along the dependency tree edges, just like the global features. Thus, the

nature of the underlying optimization problem is not modified when using the

loss-augmented prediction. This is a desirable, yet not necessary, characteristic

of loss functions in the SL framework. The model update usually is also

factored along the output structure and efficient algorithms can be used. For

dependency trees, for instance, this update can be performed in linear time,

since a tree has no more than N edges (for a sentence with N tokens plus the

artificial token).

We further extend the SL framework by introducing the EFGmethod into

it. EFG is naturally integrated in the SL framework as a preprocessing step.

In Figure 4.1, we present the pseudo-code of the entropy-guided large-margin

structure perceptron. EFG is used to generate the derived feature vectors

Φ(D)← EFG(D)
w

0 ← 0

t← 0
while no convergence

for each (x,y) ∈ D

ŷ ← argmaxy′∈Y(x)

[

〈wt,Φ(x,y′)〉+ C · ℓ(y,y′)
]

w
t+1 ← w

t +Φ(x,y)−Φ(x, ŷ)

t← t+ 1

return 1
t

∑t
k=1w

k

Figure 4.1: ESL training algorithm – the entropy-guided large-margin structure
perceptron.

Φ(D) = {Φ(x,y)}(x,y)∈D. The derived features are then used to train the

structured model. Note that, when a correct prediction is made, that is ŷ = y,

the model does not change, that is wk+1 ← w
k. When the prediction is wrong,

the update rule favors the correct output y over the predicted one ŷ. Regarding

binary features, for instance, the update rule increases the weights of features

that are present in y but missing in ŷ and decreases the weights of features

that are present in ŷ but not in y. The weights of features that are present in

both y and ŷ are not changed.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 44

A simple extension of Novikoff’s theorem (Novikoff, 1962) shows that

the structure perceptron is guaranteed to converge to a zero loss solution, if

one exists, in a finite number of steps (Altun et al., 2003; Collins, 2002a).

The convergence theorem for SPerc is stated in Theorem 1. Crammer and

Singer (2003) further prove some mistake bounds for the structure perceptron

algorithm.

Theorem 1 (Structure Perceptron Convergence) For any training

dataset D that is separable by margin δ, the structure perceptron

algorithm makes no more than R2

δ2
prediction errors, where R =

max(x,y)∈D;y′∈Y(x) ||Φ(x,y) − Φ(x,y′)|| is the radius of a hypersphere that,

centered at Φ(x,y), encloses the joint feature vectors for all alternative

outputs y
′ ∈ Y(x), for all training examples (x,y) ∈ D.

4.4

Kernelization

We argue that EFG has two main advantages over kernel functions.

EFG training algorithm is much faster than kernelized algorithms, and EFG

makes generalization performance control easier than with kernel methods. In

this section, we present the kernelized structure perceptron in order to better

understand the differences between this method and EFG.

Analogously to the binary perceptron algorithm, its structure

generalization can be easily kernelized. Given the sequence

(x1,y1, ŷ1), . . . , (xT ,yT , ŷT) of inputs, correct outputs and predicted outputs

considered by the training algorithm up to iteration T , the parameter vector

at this point can be defined as

w
T =

T−1
∑

t=1

[

Φ(xt,yt)−Φ(xt, ŷt)
]

.

The algorithm can keep track of how many times each alternative output ŷ

has been predicted instead of the correct output y for each example pair (x,y)

by means of counters αx,y,ŷ. Thus, the parameter vector can be rewritten as

w =
∑

x,y,ŷ

αx,y,ŷ · [Φ(x,y)−Φ(x, ŷ)] , (4-3)

which is called the dual model representation. The output space Y(x) of

most SL problems is exponential on the input size or even infinity. Thus, the

dual model representation may comprise an intractable number of parameters.

However, these parameters are initially zero for all x,y, ŷ and only need to be

instantiated once the respective triple is actually seen.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 45

Using (4-3), the objective function of the prediction problem can also be

rewritten as

〈w,Φ(x′,y′)〉 =
∑

x,y,ŷ

αx,y,ŷ · [〈Φ(x,y),Φ(x′,y′)〉 − 〈Φ(x, ŷ),Φ(x′,y′)〉] ,

which depends only on inner products of feature vectors of the form 〈Φa,Φb〉,

where Φa and Φb are shortcuts to, respectively, Φ(xa,ya) and Φ(xb,yb) for

any two input-output pairs (xa,ya) and (xb,yb). Following the kernel trick

(Vapnik, 1998), the inner products of feature vectors can then be replaced by

an appropriate kernel function

K(Φa,Φb) = 〈Ψ(Φa),Ψ(Φb)〉,

where Ψ(·) expands elements from the original feature vector space Φ(·, ·) to a

much higher dimensional space. The kernel trick relies on the kernel function

K(·, ·) to efficiently compute inner products in the high dimensional space of

Ψ without explicitly expanding the original feature space.

The most successful kernel function family for NLP problems is the

polynomial kernel. Considering binary features, a polynomial kernel of degree

d conjoins all possible combinations with up to d original features. The

polynomial kernel of degree d can be efficiently computed by

Kd(Φ
a,Φb) =

(

〈Φa,Φb〉+ 1
)d

,

which involves only an inner product in the original feature space, a sum

of a constant, and an exponentiation. For instance, if d = 2 and the

original space has exactly 3 binary features, then the explicit polynomial

kernel expansion of Φ(x,y) = (φ1, φ2, φ3) corresponds to Ψ(Φ(x,y)) =

(1, φ1, φ2, φ3, φ1φ2, φ1φ3, φ2φ3), if we omit redundant permutations.

The polynomial kernel of degree d is equivalent to generating all possible

templates with length up to d. The problem with these kernels is that the

only way to control which combinations are used is through the parameter

d. For some SL task, for instance, d = 2 can be not enough to capture all

relevant contextual patterns, but d = 3 can bring so many patterns that it is

harmful to the generalization performance. This is a known issue with kernel

methods and is related to overfitting. Another issue with kernel functions is

training time. Performing predictions with the dual model is much slower than

with the primal, because the former is represented by a list of dual variables

that usually keeps growing during training. Since the prediction problem is

constantly solved during training, the training algorithm becomes very slow.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

Entropy Guided Feature Generation for Structure Learning 46

Just like features, kernel functions can also be decomposed along the

output structures. Thus, the dual model representation can be even more

sparse by using α counters for each factor that appears in (x,y) but not in

(x, ŷ), and vice versa. For DP, for instance, we can store a counter for each

possible edge within a training sentence.

4.5

Empirical results

We compare ESL to polynomial kernels on two text chunking tasks. We

use ESL to train a text chunking system on the Portuguese dataset provided

by Fernandes et al. (2010b). We also train a kernelized SPerc system on the

same data using a second-degree polynomial kernel. Previous work (Kudo and

Matsumoto, 2001; Wu et al., 2006) report that this is the optimum degree

for text chunking. Again, in this experiment, we use the same basic features,

training algorithm, and datasets for both systems. In the first row of Table 4.1,

we report the performances of these two systems. ESL outperforms the kernel

Task
Kernel Method ESL

Learning F1 F1 Error Reduction

Portuguese Chunking SPerc 86.67 87.72 7.9%
English Chunking SVM 93.48 94.12 9.8%

Table 4.1: Comparison of ESL to second-degree polynomial kernel.

method, reducing its error by 7.9%. That is an impressive achievement, since

polynomial kernels present state-of-the-art results on many tasks, and training

time for kernel methods is more than one order of magnitude longer than for

ESL.

We also compare ESL to a kernel system on the CoNLL-2000 text

chunking dataset. The second row of Table 4.1 presents the performances of

ESL and a second-degree polynomial kernel system. The kernel method result

is reported by Kudo and Matsumoto (2001). They use an SVM algorithm to

train their system. However, they employ a training strategy that considers

sequential interdependencies among output variables and also use Viterbi

decoding during test. ESL outperforms this system, reducing its error by 9.8%.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA

