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Introduction

Machine learning (ML) is a very active research field whose main

objective is to learn a prediction function from a given set of examples. In

the last decades, ML has been successfully applied in many fields, such as

natural language processing, information extraction, computer vision, and

computational biology. There are several learning paradigms, but in this work

we focus on supervised machine learning. In this case, the training examples

comprise inputs and their correct outputs.

A classic ML problem is binary classification, in which the prediction

output is binary. Here, the learned model discriminates between two classes

of examples. However, many important problems involve the prediction of

a structure. In these cases, the prediction output comprises many variables

with complex interdependencies. Natural language processing (NLP) includes

many structure learning (SL) problems, such as dependency parsing (DP),

part-of-speech (POS) tagging, quotation extraction and coreference resolution.

Dependency parsing is to identify a tree underlying a given sentence. In POS

tagging, for a given input sentence, the prediction output is a sequence of tags.

In quotation extraction, an input document is segmented into non-overlapping

quotes that, additionally, are associated with their authors. Given a document

with mentions to entities from the real world – like people, companies

and places – coreference resolution consists in clustering mentions that are

references to the same entity.

1.1

Ad Hoc Approaches

Many approaches to solve structured problems are based on complex

ML systems that combine several basic classifiers. In order to consider the

interdependencies among output variables, the basic classifiers are trained

and applied by ad hoc strategies that pass information from one classifier to

another during training and enforce constraints on the prediction outputs of

the basic classifiers. One of the most basic structured problems is multiclass

classification. This is a generalization of the binary classification problem
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where one needs to discriminate among K > 2 classes of interest. There

are two common approaches to perform this task by decomposing it on

independent binary classification problems. The one-vs-all approach trains K

binary classifiers, where the k-th classifier, for k ∈ {1, . . . , K}, is trained to

discriminate the instances of class k from instances of all other classes. To

classify an unseen example, all K classifiers are applied and a rule is used

to choose only one class. Another approach to multiclass classification is the

one-vs-one technique. In this approach, K(K − 1)/2 binary classifiers are

trained in order to discriminate between each pair of classes. To classify an

unseen example, a voting scheme is used to enforce the unique-class constraint.

RelHunter (Fernandes et al., 2010b,c) is a general method for relation

extraction from text that is based on task decomposition and entropy-guided

transformation learning (ETL) (Milidiú et al., 2008; dos Santos and Milidiú,

2009b). Besides the fact that ETL considers complex output dependencies, it

is tailored for sequential outputs and thus can not directly consider arbitrary

structures. In quotation extraction, for instance, RelHunter trains two ETL

models to identify tokens that start or end a quote. Then, another ETL

model is trained to discriminate which pairs of start-end tokens are correct

quotes and, additionally, to associate them with their authors. A task specific

heuristic is later applied to discard overlapping quotes. In Fernandes et al.

(2010c), RelHunter is further applied to text chunking, clause identification,

hedge detection, and dependency parsing.

Dependency parsing (DP) (Buchholz and Marsi, 2006) is to identify

the words that syntactically modify other words in a given sentence. This

dependency structure corresponds to a rooted tree whose nodes are the

sentence words. In Figure 1.1, we show a dependency tree example. As usual,

Our system achieves the best result

Figure 1.1: Dependency tree example.

in this example, the root node is the main verb of the sentence. An edge (i, j)

connects the i-th token to the j-th token and indicates that the latter modifies

the former. Additionally, the i-th token is called the head token and the j-th

token is called the modifier. Nivre et al. (2006) propose a dependency parser

that relies on a left-to-right deterministic parsing algorithm. Four support

vector machines (SVM) are trained to predict parsing actions given features

that represent the parser history. Previous word predictions are incorporated

in order to consider the interdependency between predictions. Milidiú et al.
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(2009) cast DP as a token classification task by using a specific tagging style

that provides good generalization. In this tagging style, a modifier token class

uniquely identifies its head token. A modifier tag is given by the concatenation

of three values: the head token POS tag; how many tokens with the same

POS of the head there are between the modifier and its head; and if the head

is to the left or to the right of the modifier token. Then, an ETL model is

directly trained on the given sentences, along with their features, to predict

these specific token tags. This approach achieves good performance but has

limitations to generalize on complex sentences with several clauses, since these

instances can involve arbitrarily long distances, even with this relative distance.

These ad hoc approaches are developed on a per-task basis and do

not provide a general neither principled design pattern. Thus, they are not

directly generalized to arbitrary structures and, moreover, most of them have

no theoretical guarantees regarding their performances.

1.2

Linear Discriminative Models

In this work, we are interested in linear discriminative methods that,

regarding binary classification, for instance, learn the parameters of the

following linear discriminant function

s(x;w) = 〈w,Φ(x)〉 =
∑

m=1,...,M

wm · φm(x), (1-1)

where Φ(x) = (φ1(x), . . . , φM(x)) is a vector of M real-valued feature

functions, or simply features, that represents the input x; w = (w1, . . . , wM)

is the parameter vector – also called model, which is estimated from examples;

and 〈·, ·〉 is the scalar product operator. Then, the prediction function for a

given model w is simply

F (x;w) =







+1 if s(x;w) ≥ 0

−1 otherwise.
(1-2)

The learning problem is then to estimate w from a training set D = {(x, y)}

comprising correct input-output pairs (x, y), such that x is an input and

y ∈ {−1,+1} is the corresponding binary output.

There are plenty of training algorithms for binary classification that

follow the empirical risk minimization (ERM) principle (Vapnik, 1998). The

empirical risk of a model w on the training set D is given by

R(D,w) =
∑

(x,y)∈D

1[y 6= F (x;w)], (1-3)
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where 1[p] is equal to 1 if p is true and 0 otherwise. In words, the empirical

risk is the number of misclassified examples in the training data.

The binary perceptron (Rosenblatt, 1957) is an online algorithm that

starts from a null model w = 0 and iteratively updates its parameters. In

Figure 1.2, we present the pseudo-code of this algorithm. At each iteration,

w ← 0

while no convergence

for each (x, y) ∈ D

ŷ ← F (x;w)

w ← w +
(

y−ŷ
2

)

·Φ(x)

return w

Figure 1.2: Binary perceptron algorithm.

the perceptron draws a training example (x, y) and performs two actions: a

prediction ŷ is obtained by applying the current model w and, in case of

a prediction error, the model is updated towards the misclassified example.

Observe that, for positive examples (y = +1), the misclassified example

features Φ(x) are summed to the model parameters. And, for negative

examples (y = −1), the features are subtracted from the model parameters.

If the predicted output is correct (ŷ = y), the model w is not updated. This

algorithm is proved to converge to a zero-risk solution, if one exists (Novikoff,

1962). Other training algorithms like stochastic gradient descent or support

vector machines can also be employed with similar performance guarantees.

Weston and Watkins (1998) propose a generalization of the binary linear

discriminant approach for multiclass classification problems. Their approach

learns K linear discriminant functions, one for each class. Hence, for each

class k ∈ {1, . . . , K}, it learns a parameter vector wk of a linear discriminant

function given by
s(x;wk) = 〈wk,Φ(x)〉. (1-4)

Up to this point, this approach is very similar to the one-vs-all approach cited

earlier. However, it differs on the training strategy and also on the prediction

function that is given by

F (x;w) = argmax
y∈Y

s(x;wy), (1-5)

where w = (w1, . . . ,wK) is the concatenation of the parameter vectors for

all classes and Y = {1, . . . , K} is the set of classes. As one can notice, the K

discriminant functions are jointly employed to perform a prediction.

There are different training algorithms that jointly estimate the

discriminant parameters for this multiclass model. Weston and Watkins (1998)
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propose an SVM-based formulation by designing joint constraints for each

training example, and Crammer and Singer (2001) propose an alternative

formulation in order to derive an efficient algorithm for the resulting learning

problem. Later, Crammer and Singer (2003) introduce a family of algorithms,

called ultraconservatives, for training this kind of joint multiclass model with

proven error bounds. In this same work, Crammer and Singer further propose

the margin infused relaxed algorithm (MIRA), a ultraconservative algorithm

that incorporates a generalized notion of margin for multiclass problems.

The multiclass perceptron is a generalization of the binary perceptron and

is a member of the ultraconservative family. We present the pseudo-code

of this algorithm in Figure 1.3. As its binary counterpart, the multiclass

w ← 0

while no convergence

for each (x, y) ∈ D

ŷ ← argmaxy′∈Y〈wy′ ,Φ(x)〉

wy ← wy +Φ(x)

wŷ ← wŷ −Φ(x)

return w

Figure 1.3: Multiclass perceptron algorithm.

perceptron is an online algorithm that, on each iteration, picks a training

example (x, y) and performs two main steps. First, a prediction ŷ is obtained

by applying the multiclass prediction function (1-5) using the current joint

model w = (w1, . . . ,wK). Then, if the predicted class ŷ is not the correct

one y, the joint model w is updated as follows. The correct class model

wy is incremented by the input feature vector Φ(x) and the predicted class

model wŷ is decremented by this vector. For all other classes, their models are

not updated. This update rule benefits the correct class in detriment of the

predicted one in the next predictions regarding the current input features. If

the predicted class is correct, the correct and predicted updates cancel each

other and actually no update is performed.

Collins (2002b) further generalizes the multiclass perceptron for sequence

labeling problems, like POS tagging. Following Weston and Watkins (1998)

and Collins (2002b), Altun et al. (2003) propose an SVM-based formulation

for sequence labeling and Joachims (2003) develops a related approach for

sequence alignment. McDonald et al. (2005) further extend these methods and

propose MSTParser, a system that uses a generalization of MIRA to train a

dependency parser. Its training algorithm learns a linear discriminant function

over head-modifier edges. Given an input sentence x and an edge (i, j) that
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corresponds to a candidate dependency between the words xi and xj in x, they

define the following discriminant function

s(x, i, j;w) = 〈w,Φ(x, i, j)〉, (1-6)

where Φ(x, i, j) is a feature vector that describes the given dependency edge.

The prediction function is then given by

F (x;w) = arg max
y∈Y(x)

∑

(i,j)∈y

s(x, i, j;w), (1-7)

where Y(x) is the set of all rooted trees over the words in x, i.e., all possible

dependency trees for the input sentence. This optimization problem is thus

to find a rooted tree such that the sum of its edges scores is maximum. This

problem corresponds to the maximum branching problem that is efficiently

solved by Chu-Liu-Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967).

Fernandes and Milidiú (2012) use a generalization of the multiclass

perceptron to estimate a parameter vector that minimizes the empirical

risk of this DP model. In Figure 1.4, we present the pseudo-code for this

algorithm. Again, it is an online algorithm that, at each iteration, performs

w ← 0

while no convergence

for each (x,y) ∈ D

ŷ ← argmaxy′∈Y(x)

∑

(i,j)∈y′〈w,Φ(x, i, j)〉

w ← w +
∑

(i,j)∈y Φ(x, i, j)−
∑

(i,j)∈ŷ Φ(x, i, j)

return w

Figure 1.4: Generalized perceptron algorithm for dependency parsing.

two main actions regarding a training instance (x,y): prediction and model

update. The predicted tree ŷ is obtained by solving (1-7), which is done by

Chu-Liu-Edmonds algorithm. The update rule is similar to the one used in the

multiclass perceptron. Features present in the edges within y have their weights

incremented, and weights for features within ŷ are decremented. Edges that

are present in both y and ŷ are canceled, thus their weights are not updated.

Edges not present in either structures are also ignored.

Eventually, it has been realized that these task-specific methods are

just instances of a general structure learning framework. In this framework,

for a given input x, the prediction problem is formulated as the following

w-parameterized optimization problem

F (x;w) = arg max
y∈Y(x)

s(x,y;w), (1-8)

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 19

where Y(x) is the set of possible predictions for the given input x; and

s(x,y;w) is a w-parameterized function that jointly scores an input-output

pair (x,y). Intuitively, the scoring function measures how well the output

structure fits the input. And, it is given by the following linear discriminant

function
s(x,y;w) = 〈w,Φ(x,y)〉, (1-9)

where Φ(x,y) is an arbitrary joint feature vector representation of the

input-output pair. Thus, for a given input, the prediction problem is to find the

output with the highest score; where an output score is given by a discriminant

function that is linear on some joint feature representation.

The structure learning framework directly solves structured problems in

a general and principled way. The structure perceptron (SPerc) is a general

training algorithm that follows the ERM principle to estimate the required

parameter vector w. This algorithm is presented in Figure 10.4. It is easy

w ← 0

while no convergence

for each (x,y) ∈ D

ŷ ← argmaxy′∈Y(x)〈w,Φ(x,y′)〉

w ← w +Φ(x,y)−Φ(x, ŷ)

return w

Figure 1.5: Structure perceptron algorithm.

to show that the algorithms from Figures 1.2, 1.3 and 1.4 are instances of

the SPerc algorithm. Moreover, an extension of Novikoff’s theorem (Novikoff,

1962) proves that this algorithm converges to a zero-risk solution, if one exists.

Collins (2002b) proposes the structure perceptron algorithm with an

averaging strategy. This is a known strategy used even with the binary

perceptron and turns the algorithm more robust. In Figure 1.6, we present

the pseudo-code of the averaged SPerc. It is very similar to the algorithm

w
0 ← 0

t← 0
while no convergence

for each (x,y) ∈ D

ŷ ← argmaxy′∈Y(x)〈w
t,Φ(x,y′)〉

w
t+1 ← w

t +Φ(x,y)−Φ(x, ŷ)

t← t+ 1

return 1
t

∑t
k=1w

k

Figure 1.6: Averaged structure perceptron algorithm.

presented in Figure 10.4. Given that the algorithm executes for T iterations, the
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averaged SPerc builds a sequence of models w0, . . . ,wT . Instead of returning

the last model wT , like the ordinary SPerc, it returns the average among all

built models, that is, w = 1
T

∑T

k=1 w
k. Each update in the SPerc algorithm

has potentially a big impact on the model parameters. Thus, the averaged

algorithm is more robust to noisy examples, and usually performs significantly

better than the non-averaged version.

The power of this framework relies mainly on the freedom to design

the feature representation and the prediction problem. Specific feature

representations allow the design of adherent models for complex SL problems.

The decomposition of the joint feature vector along the output structures gives

rise to meaningful prediction problems that frequently are reduced to well

studied optimization problems. For instance, Collins (2002b) and Altun et al.

(2003) model sequence labeling problems through the SL framework, and the

resulting prediction problems are solved by the well known Viterbi algorithm;

Joachims (2003) develops an approach to learn sequence alignment score

functions that are then plugged in the Smith-Waterman alignment algorithm

(Smith and Waterman, 1981); and Altun et al. (2007) create a constituent

parser whose prediction is performed by the CKY parsing algorithm. This

natural fitting between prediction problems and task-meaningful algorithms is

no coincidence. It is a consequence of the fact that the SL framework is general

yet very flexible.

1.3

Nonlinearity

Linear models are pervasive in ML, mainly because there are efficient

training algorithms with proven error bounds to estimate such models. On the

other hand, many SL problems are highly non-linear on the available input

features. Therefore, when training a linear model within the SL framework,

it is necessary to use some feature generation method in order to provide the

required nonlinear feature combinations.

Feature generation is frequently solved by a domain expert that generates

complex and discriminative feature templates by conjoining input features.

Manual template generation is a limited and expensive way to obtain feature

templates and is recognized as a modeling bottleneck. Another popular

alternative is to employ a kernel function, if the learning algorithm allows

it. Besides the fact that kernelized training algorithms are computationally

expensive, it is difficult to control the generalization performance of the learned

models.
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1.4

Entropy-Guided Structure Learning

In this work, we use Entropy-guided Feature Generation (EFG), an

automatic method to generate feature templates. EFG is based on the

conditional entropy of local prediction variables given basic features. It

receives a training dataset with basic features and produces a set of feature

templates by conjoining features that together are highly discriminative. EFG

is based on the same strategy of Entropy-guided Transformation Learning

(ETL) (Milidiú et al., 2008; dos Santos and Milidiú, 2009a), which generalizes

Transformation-Based Learning (Brill, 1995) by automatically generating rule

templates.

We introduce EFG in Fernandes and Milidiú (2012), where we apply it to

Portuguese dependency parsing and show that it obtains higher performance

than the best available manual templates, when the same basic features are

given to both systems. In the Conference on Computational Natural Language

Learning (CoNLL) 2012 Shared Task (Pradhan et al., 2012), we propose

another EFG-based system that achieves the very first place in this competition

(Fernandes et al., 2012b). Here, we experimentally compare EFG to manual

template generation and kernel methods on three tasks. In Table 1.1, we

summarize these results. Observe that EFG outperforms both alternative

Alternative System EFG

Task Method F1 F1 Error Reduction

Portuguese DP Manual Templates 90.06 90.28 2.2%
English Chunking Kernel 93.48 94.12 9.8%

Portuguese Chunking Kernel 86.67 87.72 7.9%

Table 1.1: Comparison of EFG with other feature generation methods.

methods on the evaluated datasets. Additionally, it is much cheaper than

manual templates and computationally faster than kernel methods.

EFG is easily integrated into the general structure learning framework.

We extend this framework by including EFG as a preprocessing step. We

denote this extension Entropy-guided Structure Learning (ESL) framework.

ESL is not restricted to natural language processing tasks. In Figure 1.7, we

present the pseudo-code of the extended framework. The training dataset D is

given with the available basic features. Before running the learning algorithm,

we apply EFG to generate non-linear features that compose the feature vectors

Φ(D) = {Φ(x,y)}(x,y)∈D given as input for the learning algorithm.

We evaluate the entropy-guided structure learning framework on nine

datasets involving five NLP tasks and four languages. In Table 1.2, we depict

the performances achieved by ESL systems compared with the best known
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Φ(D)← EFG(D)
w

0 ← 0

t← 0
while no convergence

for each (x,y) ∈ D

ŷ ← argmaxy′∈Y(x)〈w
t,Φ(x,y′)〉

w
t+1 ← w

t +Φ(x,y)−Φ(x, ŷ)

t← t+ 1

return 1
t

∑t
k=1w

k

Figure 1.7: Entropy-Guided Structure Learning framework.

results for each task. ESL reduces the smallest known error for some tasks and

Task Language

ESL

State of
Accuracy

Error

the Art Reduction

POS Tagging Portuguese 96.94 97.12 5.9%
POS Tagging English 96.83 96.72 −3.5%
Text Chunking Portuguese 87.46 87.72 2.1%
Text Chunking English 94.21 94.12 −1.6%

Dependency Parsing Portuguese 93.03 92.66 −5.3%
Quotation Extraction Portuguese 71.26 76.80 19.3%
Coreference Resolution Arabic 53.55 54.22 1.4%
Coreference Resolution Chinese 62.24 62.87 1.7%
Coreference Resolution English 61.31 63.37 5.3%
Coreference Resolution Multilingual 58.25 60.15 4.5%

Table 1.2: Comparison of ESL with state-of-the-art systems.

achieves state-of-the-art comparable results for others. These are remarkable

results, specially considering that ESL is relatively simple to be applied on such

complex tasks. Moreover, many of the systems that outperform ESL include

additional information that could be also included in our systems.

1.5

Contributions

This work has seven main contributions:

1. the ESL framework;

2. a comparison of EFG with manual templates and polynomial kernels;

3. nine ESL based systems for fundamental NLP tasks;

4. state-of-the-art systems for three Portuguese tasks;

5. a novel SL modeling of coreference resolution based on latent trees;
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6. ESL-based systems that achieve the best performance on the renowned

CoNLL-2012 Shared Task on multilingual coreference resolution;

7. state-of-the-art systems for coreference resolution on Arabic, Chinese and

English.

Partial results related to this work have been previously presented in

eight important scientific events (Fernandes et al., 2009a,b; dos Santos et al.,

2010; Fernandes et al., 2010a,b; Fernandes and Brefeld, 2011; Fernandes and

Milidiú, 2012; Fernandes et al., 2012b) and one journal paper (Fernandes et al.,

2010c).

Our key contribution is the entropy-guided structure learning framework

that extends the general linear discriminative SL framework. ESL employs the

entropy-guided feature generation method to solve the problem of non-linear

feature generation, a known modeling bottleneck. This framework provides a

general machine learning approach that can be applied to supervised structure

learning problems.

Our second main contribution is to compare the EFG method with

two alternative methods for non-linear feature generation, namely manual

templates and polynomial kernel methods. We demonstrate that EFG is

superior to both alternatives, since it achieves higher performance. Moreover,

it is cheaper than manual templates, faster than kernel methods and avoids

the overfitting issue shown by the latter. EFG outperforms the best available

manual template set for dependency parsing on the Portuguese dataset

provided in the CoNLL-2006 Shared Task. We also compare EFG with

polynomial kernel methods for Portuguese and English text chunking. EFG

outperforms both methods.

Our third main contribution is the ESL framework instantiation on

five NLP tasks and the assessment of the resulting systems by comparing

their performances with the best known results on nine datasets involving

four languages. These five tasks involve four different structured outputs,

namely: sequence, segmentation, rooted tree and clustering. The developed

ESL systems present state-of-the-art comparable performances on all evaluated

datasets.

Our fourth main contribution is to provide three ESL-based systems

that outperform the best previous systems on three Portuguese tasks. On

Mac-Morpho, a POS tagging dataset, our system reduces the previous smallest

error by 5.9%. On Bosque, a text chunking dataset, the proposed ESL system

reduces the previous smallest error by 2.1%. For quotation extraction, our
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system reduces the previous smallest error on the GloboQuotes dataset by

19.3%.

Our fifth main contribution is a novel coreference resolution modeling

which employs a latent structure in order to control the complexity of the

prediction problem. Coreference resolution is a clustering problem and most

objective functions for such problems lead to NP-hard optimization problems.

In order to design a prediction problem that can be efficiently solved, we

represent a coreference cluster as a directed tree that is intuitively adherent to

the coreference task.

By employing this latent modeling along with the ESL framework, we

achieve the very first place on the renowned CoNLL 2012 Shared Task. The

competing systems are ranked by the mean score over three languages: Arabic,

Chinese and English. Our ESL systems present an error that is 1.1% smaller

than the runner-up competitor on this multilingual task. By further improving

our Chinese system, we achieve a 4.5% error reduction over the runner-up

system. This relevant achievement constitutes our sixth main contribution.

Our coreference resolution systems achieve the best known performance

on the three languages considered in the CoNLL-2012 Shared Task. Our

systems reduce the smaller known error by 1.4%, 1.7%, and 5.3%, respectively,

on Arabic, Chinese and English. These state-of-the-art systems for multilingual

unrestricted coreference resolution comprise our seventh main contribution.

1.6

Dissertation Organization

We use the dependency parsing task as an illustrative application of the

main concepts underlying our work. In Chapter 2, we detail the application

of the structure learning framework for this task. In this chapter, we also

introduce two important extensions to the basic SL framework, namely large

margin training and latent structures. In Chapter 3, we describe the proposed

entropy-guided feature generation method for structure learning problems.

Again, we use DP to illustrate EFG application. We also present in this

chapter a comparison of the EFG method to manual templates and kernel

methods under the same experimental conditions. In Chapter 4, we detail

ESL, the extension of the structure learning framework by incorporating

EFG. We also show that the DP system presented in the previous chapters

is an instance of this general framework. One key component of ESL is the

prediction problem. We discuss some important aspects related to prediction

problems in Chapter 5. In this chapter, we also present important examples

of prediction problems. Our dependency parsing system is summarized in
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Chapter 6. We apply our framework to two part-of-speech tagging datasets. In

Chapter 7, we detail these two applications and their experimental results.

In Chapter 8, we introduce the application of ESL to two text chunking

datasets and the corresponding experimental results. In Chapter 9, we present

an ESL-based system to quotation extraction and report on some experiments

with a Portuguese dataset. As mentioned before, we achieved the first place in

the CoNLL-2012 Shared Task, which was dedicated to multilingual coreference

resolution. In Chapter 10, we describe our ESL modeling for this task and

the achieved results. This system further extends the ESL framework by

introducing latent structures, which are also described. Finally, in Chapter

11, we present our concluding remarks.
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